Abstract:
A receiver system comprising: an input terminal configured to receive input signalling comprising a plurality of antenna-signals, wherein the plurality of antenna-signals each comprise information that corresponds to a first-frequency-bin and a second-frequency-bin. AoA-blocks can determine a first-angle-of-arrival and a second-angle-of-arrival associated with the first- and second-frequency-bins. A first-weighting-determination-block configured to, based on the first-angle-of-arrival and the second-angle-of-arrival, either: set first-weighting-values as values for constructively combining the information that corresponds to the first-frequency-bins of the plurality of antenna-signals; or set first-weighting-values as values for destructively combining the information that corresponds to the first-frequency-bins of the plurality of antenna-signals.
Abstract:
A receiver circuit comprising an averaging-processing-block that is configured to receive an OFDM signal. The OFDM signal comprises a plurality of sample-values, wherein the sample-values comprise: a middle-sample-value; a lower-sample-value-group; and a higher-sample-value-group. The averaging-processing-block can determine an averaged-sample-value for the middle-sample-value by performing an averaging operation on the sample-values of the lower-sample-value-group and the higher-sample-value-group, but not on the middle-sample-value.
Abstract:
Various exemplary embodiments relate to a method for improving reception of transmissions with first adjacent interference signals, the method including selecting one or more time samples from each of two or more antennas; generating a lower first adjacent interference (LFAI) signal, a desired signal, and an upper first adjacent interference (UFAI) signal for each of the time samples; calculating a lower weighting co-efficient based on the LFAI signal; calculating a middle weighting co-efficient based on the desired signal; calculating a upper weighting co-efficient based on the UFAI signal; combining the lower weighting co-efficient with a filtered LFAI signal into a weighted lower signal; combining the middle weighting co-efficient with a filtered desired signal into a weighted middle signal; combining the upper weighting co-efficient with a filtered UFAI signal into a weighted upper signal; and combining the weighted lower signal, the weighted middle signal, and the weighted upper signal.
Abstract:
A communications device includes aspects for improving reception of transmissions with first-adjacent co-channel interference signals corresponding to digitally-modulated side-bands of in-band on-channel (IBOC) broadcasted signals. The communications device may include a radio frequency (RF) signal-reception circuit including two RF-signal paths driven in response to signals received via at least two respective antennas, and configured to respond to signals carried in the respective RF-signal paths by providing pre-processed RF output signals. The communications device may further include a beam-forming circuit driven in response to signals received at the at least two respective antennas and configured and arranged to facilitate first-adjacent interference cancellation (FAC). The communications device can also include an interference-cancelling circuit configured and arranged to reduce the first-adjacent co-channel interference signals by combining a beam-forming output signal provided by the beam-forming circuit with the pre-processed RF output signals as part of a maximum ratio combining (MRC) process.
Abstract:
A method for k-bit Enumerative Sphere Shaping (ESS) of multidimensional constellations includes converting a first set of a plurality of uniformly distributed data bits from a serial data bit stream to a first unsigned amplitude sequence comprising a plurality of amplitudes bounded by a spherical constellation of maximum energy levels of a plurality of energy levels, wherein the first unsigned amplitude sequence has a Gaussian distribution and each of the energy levels is determined by a respective one of the amplitudes in the amplitude sequence. The first unsigned amplitude sequence is converted to a first shaped data bit sequence. The first shaped data bit sequence is combined with a second set of a one or more uniformly distributed data bits from the serial data bit stream to form a combined data stream. The combined data stream is mapped to a combined amplitude stream.
Abstract:
A receiver circuit comprising a beamformer and an MRC-block. The beamformer configured to: apply combination-weighting-values to a first-BF-input-signal and a second-BF-input-signal in order to provide a BF-combination-signal; and apply suppression-weighting-values to the first-BF-input-signal and the second-BF-input-signal in order to provide a BF-suppression-signal. The MRC-block comprising: a first-demodulator configured to demodulate the BF-combination-signal in order to provide a demodulated-combination-signal that comprises bit metrics; a second-demodulator configured to demodulate the BF-suppression-signal in order to provide a demodulated-suppression-signal that comprises bit metrics; and a combiner configured to combine the demodulated-combination-signal with the demodulated-suppression-signal in order to provide an MRC-output-signal.
Abstract:
A receiver circuit comprising a beamformer and an MRC-block. The beamformer configured to: apply combination-weighting-values to a first-BF-input-signal and a second-BF-input-signal in order to provide a BF-combination-signal; and apply suppression-weighting-values to the first-BF-input-signal and the second-BF-input-signal in order to provide a BF-suppression-signal. The MRC-block comprising: a first-demodulator configured to demodulate the BF-combination-signal in order to provide a demodulated-combination-signal that comprises bit metrics; a second-demodulator configured to demodulate the BF-suppression-signal in order to provide a demodulated-suppression-signal that comprises bit metrics; and a combiner configured to combine the demodulated-combination-signal with the demodulated-suppression-signal in order to provide an MRC-output-signal.
Abstract:
The invention provides a reception method and apparatus which provides a series of frequency shifts and filtering operations to sideband signals (lower, upper, and middle), to enable detection if the central part of a signal is analogue or digital, and to enable effective co-channel interference compensation. The invention enables (H)IBOC signals for example to be processed with a narrower bandwidth and therefore a lower processing clock speed and complexity is made possible compared to the conventional (H)IBOC-signal processing approach.