Abstract:
Method and apparatus for processing edges in an image are provided. The method in an embodiment includes the following steps. With respect to a cross-shaped patterned centered at a target pixel of an input image, a first-direction gradient along a first direction and a second-direction gradient along a second direction are calculated. According to the first-direction and second-direction gradients, it is determined whether to compensate the target pixel based on pixel values of a first plurality of pixels along the second direction or pixel values of a second plurality of pixels along the first direction within the cross-shaped pattern, or to output a pixel value of the target pixel.
Abstract:
A tone-mapping method for adjusting a contrast of an image includes generating a luminance histogram of the image according to a luminance and a sharpness of the image; performing histogram equalization on the luminance histogram, to generate a luminance mapping function corresponding to the image; performing a weighted operation on the luminance mapping function and a linear function, to generate a weighted luminance mapping function corresponding to the image; generating a tone-mapping look-up table corresponding to the image according to the weighted luminance mapping function; and adjusting the luminance of the image according to the tone-mapping look-up table, so as to adjust the contrast of the image.
Abstract:
Method and apparatus for partial lens shading compensation are provided. An image area is divided, from the inside towards the outside of the image area, into several partial areas centered on an optical center of the image. When a target pixel is identified as being located in one of the partial areas, a corresponding compensation gain is determined according to the position of the target pixel with reference to the optical center. Another compensation gain is determined according to the position of the target pixel with reference to the optical center. A mixed compensation value is determined according to the compensation gains, so as to compensate the target pixel.
Abstract:
An automatic-focusing imaging capture device includes a first imaging capture module for generating a clue imaging information according to an object and a second imaging capture module for determining whether or not to re-focus for generating an imaging information corresponding to the object according to the clue imaging information; wherein a first frame rate of the first imaging capture module is higher than a second frame rate of the second imaging capture module, and the clue imaging information includes an object-distance information and a depth-of-field information.
Abstract:
An auto-color-correction method for an image capturing device includes calculating a plurality color temperatures of a plurality of pixels in an image; calculating a number of pixels of the plurality of pixels located in a first color temperature range as a first number and a number of pixels of the plurality of pixels located in a second color temperature range as a second number; generating a color temperature weight according to the first number and the second number; and generating at least one correction coefficient according to the color temperature weight, at least one first coefficient corresponding to the first color temperature range and at least one second coefficient corresponding to the second color temperature range.
Abstract:
Method and apparatus for processing edges in an image are provided. The method in an embodiment includes the following steps. With respect to a cross-shaped patterned centered at a target pixel of an input image, a first-direction gradient along a first direction and a second-direction gradient along a second direction are calculated. According to the first-direction and second-direction gradients, it is determined whether to compensate the target pixel based on pixel values of a first plurality of pixels along the second direction or pixel values of a second plurality of pixels along the first direction within the cross-shaped pattern, or to output a pixel value of the target pixel.
Abstract:
A focusing method for an image capturing device includes detecting a plurality of focus frames of a plurality of characteristic points in a capturing area; acquiring a plurality of focuses according to the plurality of focus frames; and capturing a plurality of images according to each of the plurality of focuses.
Abstract:
A color filter array for an image sensing device includes a plurality of pixels, for generating a plurality of pixel data of an image; and a control unit, for controlling the plurality of pixels; wherein each of the plurality of pixels is divided into a plurality of sub-pixels; wherein the pixel data outputted by each of the plurality of pixels is generated based on at least one pixel value of the plurality of sub-pixels and the outputted pixel data is smaller than a saturated threshold; wherein at least one pixel in the plurality of pixels has a mixed color by having different sub-pixel colors in the plurality of sub-pixels.
Abstract:
A color filter array for an image sensing device is disclosed. The color filter array includes a plurality of pixels and a control unit. The plurality of pixels is utilized for generating a plurality of pixel data of an image. The control unit is utilized for controlling the plurality of pixels. In addition, each of the plurality of pixels is divided into a plurality of sub-pixels corresponding to the same color. When outputting the plurality of pixel data, each of the plurality of pixels accumulates pixel value of at least one of the plurality of sub-pixels in each of the plurality of pixels as the pixel data outputted by each of the plurality of pixels.
Abstract:
An auto-color-correction method for an image capturing device includes calculating a plurality color temperatures of a plurality of pixels in an image; calculating a number of pixels of the plurality of pixels located in a first color temperature range as a first number and a number of pixels of the plurality of pixels located in a second color temperature range as a second number; generating a color temperature weight according to the first number and the second number; and generating at least one correction coefficient according to the color temperature weight, at least one first coefficient corresponding to the first color temperature range and at least one second coefficient corresponding to the second color temperature range.