Abstract:
A non-contact body temperature measurement device includes a thermal imager, an anemometer and a processing unit. The thermal imager is provided to capture thermal images. The anemometer is provided to measure wind speed and output a wind speed signal. The processing unit is provided to process the thermal images according to the wind speed signal and remove the thermal image showing great variation in temperature between two consecutive frames. Consequently, an accurate body temperature can be measured through the processed thermal images.
Abstract:
In a frequency-offset self-injection-locked (FOSIL) radar, a first mixer is provided to mix a first oscillation signal of a first injection-locked oscillator (ILO) and a second oscillation signal of a second ILO so as to cancel out the frequency drifts of the first and second oscillation signals. Accordingly, the transmit frequency of the FOSIL radar can remain constant to mitigate the EMI issue.
Abstract:
A six-port self-injection-locked (SIL) radar includes an oscillation element, an antenna element, a six-port frequency demodulation element and a signal processing element. Because of a coupler and a phase shifter of the six-port frequency demodulation element, the signal processing element can extract vibration information of subject by using only two demodulated signals output from the six-port frequency demodulation element. As a result, the operation frequency of the six-port SIL radar is not limited by hardware architecture, and the hardware costs and the power consumption are also reduced.
Abstract:
A signal demodulation device includes an IQ mixer, a differential element and a signal processor. The IQ mixer is configured to output a first mixed signal and a second mixed signal. The differential element is electrically connected to the IQ mixer for receiving the first and second mixed signals and configured to differentiate the first and second mixed signals and output a first derivative signal and a second derivative signal. The signal processor is electrically connected to the differential element for receiving the first and second derivative signals and configured to demodulate the first and second derivative signals and output a first demodulated signal.
Abstract:
In a vital sign sensor of the present invention, an antenna assembly radiates an oscillation signal generated by a SIL oscillator to an object in a form of a wireless signal and receives a reflected signal from the object, and the reflected signal can have the SIL oscillator injection-locked. The wireless signal radiated from the antenna assembly is transmitted to a demodulator for demodulation such that the vital signs of the object can be obtained. Additionally, an isolator of the antenna assembly is provided to prevent the SIL oscillator from receiving a clutter reflected from the demodulator and an environment where the demodulator is placed. As a result, the clutter can't influence the vital sign detection of the object.
Abstract:
An active phase switchable array includes a plurality of antenna elements and a bias circuit. Each of the radar elements includes an antenna, a power coupling network and an injection-locked oscillator (ILO), and each of the antenna elements is coupled with each other through the power coupling networks for operating the ILO of each of the antenna elements in self- and mutual-injection-locked states. The antenna elements in self-injection-locked state are utilized to detect the vital signs of subjects, and the antenna elements in mutual-injection-locked state are utilized to produce phase difference between the radiating signals of the antenna elements for forming a beam. As a result, the active phase switchable array can simultaneously detect the vital signs of multiple subjects.
Abstract:
A wideband frequency synthesizer and a frequency synthesizing method thereof are provided. The wideband frequency synthesizer includes a phase-locked loop unit, a first voltage-controlled oscillating unit and a first frequency mixer unit. The phase-locked loop unit receives a reference signal and a feedback signal and generates a first oscillating signal according to the reference signal and the feedback signal. The first voltage-controlled oscillating unit generates a second oscillating signal. The first frequency mixer is coupled to the phase-locked loop unit and the first voltage-controlled oscillating unit, receives the first oscillating signal and the second oscillating signal for mixing frequencies of the first oscillating signal and the second oscillating signal to generate an output signal and taking the output signal as the feedback signal for outputting to the phase-locked loop unit.
Abstract:
A multiple-target vital sign detector includes a self-injection-locked oscillator (SILO), a chirp up/down converter, a frequency demodulator and a multiple-target vital sign processor. The chirp up/down converter performs conversion from an oscillation signal generated by the SILO to a frequency-modulated continuous wave (FMCW) signal to detect an area and from a received FMCW signal reflected from the area to an injection signal, while the SILO is injected with the injection signal to enter a self-injection-locked state. The locations and vital signs of multiple subjects are extracted from the oscillation signal using the frequency demodulator and the multiple-target vital sign processor. The objective of using the SILO is to improve the sensitivity of the FMCW detection process so as to more effectively distinguish the vital signs of multiple subjects at different locations.
Abstract:
A six-port self-injection-locked (SIL) radar includes an oscillation element, an antenna element, a six-port frequency demodulation element and a signal processing element. Because of a coupler and a phase shifter of the six-port frequency demodulation element, the signal processing element can extract vibration information of subject by using only two demodulated signals output from the six-port frequency demodulation element. As a result, the operation frequency of the six-port SIL radar is not limited by hardware architecture, and the hardware costs and the power consumption are also reduced.
Abstract:
In a vital sign sensor of the present invention, an antenna assembly radiates an oscillation signal generated by a SIL oscillator to an object in a form of a wireless signal and receives a reflected signal from the object, and the reflected signal can have the SIL oscillator injection-locked. The wireless signal radiated from the antenna assembly is transmitted to a demodulator for demodulation such that the vital signs of the object can be obtained. Additionally, an isolator of the antenna assembly is provided to prevent the SIL oscillator from receiving a clutter reflected from the demodulator and an environment where the demodulator is placed. As a result, the clutter can't influence the vital sign detection of the object.