Abstract:
A holographic storage layer includes a reflective structure and photosensitive units. The reflective structure is a grid-shaped structure and includes cavities. The photosensitive units are disposed in the cavities, in which each of the photosensitive units is surrounded by the reflective structure. First openings and second openings are defined by the reflective structure, and the photosensitive units are exposed by the first openings and the second openings respectively.
Abstract:
The present invention discloses a microscopy imaging structure with phase conjugated mirror and the method thereof. The afore-mentioned imaging structure produces a reverse focusing conjugated probe beam together with an original probe beam. These two probe beams meet at the focal point in the object body to be probed, and an interference pattern is produced. The interval between any two consecutive wave fronts in the interference pattern is then half of the wavelength of the original probe beam, and hence the vertical resolution of the image is improved. The present invention also applies a light modulator module on the probe beam to easily adjust the depth of the focal point of the probe beam and the phase conjugated reverse focusing probe beam in the object body. With the adoption of this invention, the size or position limitation of the target object is eliminated and the imaging resolution is also improved.
Abstract:
A holographic light-emitting module includes a light source module and a light shape control module. The light source module is configured to provide a signal light beam and a reference light beam, in which polarizations of the signal light beam and the reference light beam are orthogonal. The light shape control module is configured to receive the signal light beam and the reference light beam propagated from the light source module, in which the signal light beam and the reference light beam are modulated and emitted by the light shape control module The reference light beam is surrounded by the signal light beam and located at a center of the signal light beam, and the signal light beam and the reference light beam are partially overlapped.
Abstract:
A method for reconstructing a surface of an object includes the steps as follows. A light beam is modulated by a spatial light modulator (SLM) and is projected to form a pattern, wherein the pattern has a transmittance distribution in a cosine distribution such that the pattern is formed to become a fringe pattern with a periodic change. A first impulse and a second impulse present within a first period and a second period of the cosine distribution, wherein a position where the first impulse occurs within the first period and a position where the second impulse occurs within the second period are different. The light beam is guided to an object so as to form a scan pattern on the object. The scan pattern is read. According to the scan pattern, a surface profile of the object is calculated.
Abstract:
A digital holographic microscope is provided. The digital holographic microscope includes a light source, a grating, an image sensing device, and an optical module. The light source is configured for providing a light beam. The grating is disposed between the light source and a sample. The grating is configured for splitting the light beam into a reference light beam and an object light beam. The image sensing device is configured for collecting the reference light beam, and collecting the object light beam reflected from the sample. The optical module is disposed between the light source and the sample, and is configured for guiding the reference light beam to the image sensing device, and guiding the object light beam to the sample.
Abstract:
A light interference module includes an object lens, a first light-guiding element, and a second light-guiding element. The object lens is configured to project a signal light beam to an optical storage media. The first light-guiding element is configured to project a first reference light beam to the optical storage media, in which the first reference light beam and the signal light beam produce a first interference pattern on the optical storage media. The second light-guiding element is configured to project a second reference light beam to the optical storage media, in which the second reference light beam and the signal light beam produce a second interference pattern on the optical storage media, and the first interference pattern is different from the second interference pattern.
Abstract:
The present invention provides a digital hologram recording system and a numerical reconstruction method for a hologram, which are used for capturing an image of an object and recording it as a holographic data. Said system comprises: signal light, formed after irradiating the object with a light source; an image detector, for recording interference fringes of the signal light; and a light pipe, arranged in a path of the signal light and located between the object and the image detector, wherein the light pipe has a reflection surface, and a part of the signal light enters the image detector after reflected by the reflection surface of the light pipe. The present invention can make the collected signal equivalent to several times of the pixel counts of the image detector, thereby able to break through the spatial bandwidth limitation and shortening the amount of time required to measure the hologram.