Abstract:
A novel Macro-assisted Multi-Connectivity (MC) mobility scheme for UEs traversing clusters of (mmWave) small cells (small-BS or SBS) under the coverage of the same 5G or LTE Macro-cell (macro-BS or MBS) is proposed. It keeps the same Control/User split scheme and C-Plane anchor at MBS, same as in LTE Dual Connectivity (DuCo or DC), yet extending DuCo with a multi-connectivity split bearer user plane. For example, MBS adopts a multi-way packet data convergence protocol (PDCP) bearer split based on routing weighted by channel quality, SBS's resource availability, etc. with or without inter-BS flow control. Utilizing the MC user plane, a macro-assisted make-before-break MC mobility can be enabled.
Abstract:
A method of providing spatial diversity for critical data delivery in a beamformed mmWave smallcell is proposed. The proposed spatial diversity scheme offers duplicate or incremental data/signal transmission and reception by using multiple different beams for the same source and destination. The proposed spatial diversity scheme can be combined with other diversity schemes in time, frequency, and code, etc. for the same purpose. In addition, the proposed spatial diversity scheme combines the physical-layer resources associated with the beams with other resources of the same or different protocol layers. By spatial signaling repetition to avoid Radio Link Failure (RLF) and Handover Failure (HOF), mobility robustness can be enhanced. Mission-critical and/or time-critical data delivery can also be achieved without relying on retransmission.
Abstract:
A novel Macro-assisted Multi-Connectivity (MC) mobility scheme for UEs traversing clusters of (mmWave) small cells (small-BS or SBS) under the coverage of the same 5G or LTE Macro-cell (macro-BS or MBS) is proposed. It keeps the same Control/User split scheme and C-Plane anchor at MBS, same as in LTE Dual Connectivity (DuCo or DC), yet extending DuCo with a multi-connectivity split bearer user plane. For example, MBS adopts a multi-way packet data convergence protocol (PDCP) bearer split based on routing weighted by channel quality, SBS's resource availability, etc. with or without inter-BS flow control. Utilizing the MC user plane, a macro-assisted make-before-break MC mobility can be enabled.
Abstract:
A method of beam misalignment detection for wireless communication system with beamforming is proposed. To identify a misaligned beam, a relative beam quality degradation is applied by comparing a dedicated beam quality with a reference beam quality. The reference beam favors similar transmission path as the dedicated beam, and has better mobility robustness. In one embodiment, the reference beam is an associated control beam of the dedicated beam. To detect beam misalignment, a first dedicated beam SINR is compared with a second associated control beam SINR.
Abstract:
Inter-cell coordination and beam-aware scanning with end-to-end UE-BS signaling enhancements for robust HO trigger in a beamforming mmWave network is proposed. From the network and the base station perspective, inter-BS control beam coordination is performed, coupled with neighbor-cell information advertisement to facilitate UE-side beam-aware scanning. Inter-BS CB coordination enables a variety of network planning, pre-determined or random, enhanced with UE-reports and dynamic re-coordination to minimize inter-cell interference. From UE perspective, by utilizing the advertised CB information, UE can learn serving cell and neighbor cell CB pattern for beam-aware scanning. Beam-aware scanning enables power saving fast scanning at the UE with beam-aware HO measurement of neighboring and target cells, which reduces HO latency and avoids unnecessary HO.
Abstract:
A method of beam misalignment detection for wireless communication system with beamforming is proposed. To identify a misaligned beam, a relative beam quality degradation is applied by comparing a dedicated beam quality with a reference beam quality. The reference beam favors similar transmission path as the dedicated beam, and has better mobility robustness. In one embodiment, the reference beam is an associated control beam of the dedicated beam. To detect beam misalignment, a first dedicated beam SINR is compared with a second associated control beam SINR.
Abstract:
A novel Macro-assisted Multi-Connectivity (MC) mobility scheme for UEs traversing clusters of (mmWave) small cells (small-BS or SBS) under the coverage of the same 5G or LTE Macro-cell (macro-BS or MBS) is proposed. It keeps the same Control/User split scheme and C-Plane anchor at MBS, same as in LTE Dual Connectivity (DuCo or DC), yet extending DuCo with a multi-connectivity split bearer user plane. For example, MBS adopts a multi-way packet data convergence protocol (PDCP) bearer split based on routing weighted by channel quality, SBS's resource availability, etc. with or without inter-BS flow control. Utilizing the MC user plane, a macro-assisted make-before-break MC mobility can be enabled.
Abstract:
A method of beam misalignment detection for wireless communication system with beamforming is proposed. To identify a misaligned beam, a relative beam quality degradation is applied by comparing a dedicated beam quality with a reference beam quality. The reference beam favors similar transmission path as the dedicated beam, and has better mobility robustness. In one embodiment, the reference beam is an associated control beam of the dedicated beam. To detect beam misalignment, a first dedicated beam SINR is compared with a second associated control beam SINR.
Abstract:
Millimeter-wave (mmWave) band communication is a very promising technology for 5G small cells. In practice, such a new system will coexist with legacy or evolved microwave band systems, such as E-UTRAN LTE macro-cell cellular systems, for a long time to come. Considering the typical scenarios where a macro cell offers umbrella coverage for clusters of small cells, several user plane (U-plane) architectural choices of macro-assisted 5G mmWave systems from both UE and network's perspectives are evaluated. The proposed On-demand Reconfiguration U-Plane Architecture (ORUA) for Macro-assisted Millimeter Wave (mmWave) small cells is designed to meet 5G expectations of dense deployment of small cells and UEs and beamformed intermittent Gbps links.
Abstract:
A method of offload selection for a UE to select between 3GPP RAT and WLAN cell is provided. The UE receives configuration information that applies to selecting WLAN or 3GPP radio access technology (RAT). The UE determines if the UE may perform WLAN offload by evaluating 3GPP radio access network (RAN) conditions where at least one RAN condition is related to a radio signal strength or a radio signal quality in 3GPP RAT. The UE then determines if there is at least one suitable WLAN cell by evaluating WLAN conditions. The UE also determines if there is candidate traffic for WLAN offload. Finally, the UE steers the determined traffic to WLAN if the UE may perform WLAN offload and if there is at least one suitable WLAN cell. Otherwise, the UE steers the determined traffic to 3GPP RAT.