Cranial insertion placement verification

    公开(公告)号:US10939962B1

    公开(公告)日:2021-03-09

    申请号:US15089704

    申请日:2016-04-04

    Abstract: A system and method for verifying the accurate insertion positioning of a robotically guided surgical tool or probe, at its cranial target region, such as for Deep Brain Stimulation. A head mounted robot aligns a probe or tool guiding sleeve, together with an aiming rod attached at a predefined position and angle to the guiding sleeve. The aiming rod incorporates apertures through which an X-ray system can view the patient's skull. The aiming rod is attached to the tool guiding sleeve at an angle and position calculated such that the line of sight through the apertures falls exactly on the target region when the tool or probe is inserted to its predetermined depth. If the tip of the tool or probe is seen located at the center of the apertures in the X-ray image, verification is obtained that the insertion procedure has been performed accurately.

    TIME-SPACED ROBOTIC REFERENCE FRAMES
    16.
    发明公开

    公开(公告)号:US20230255699A1

    公开(公告)日:2023-08-17

    申请号:US18003147

    申请日:2021-06-30

    CPC classification number: A61B34/30 A61B34/20 A61B2034/305 A61B2034/2059

    Abstract: A robotic navigation system includes a robot base (140); a robotic arm (144) comprising a proximal portion secured to the robot base, a distal portion movable relative to the proximal portion, and a tracking marker (156) secured to the robotic arm proximate the distal portion; at least one processor; a navigation system including a tracking marker sensor configured to identify positions of the tracking marker in a first coordinate space; and a memory. The memory stores instructions that cause the at least one processor to: cause the robotic arm (144) to move to a plurality of different poses; receive information relating to a position of the tracking marker (156) in a second coordinate space when the robotic arm is in each of the plurality of different poses; and compare the positions of the tracking marker in the first coordinate space to the positions of the tracking marker in the second coordinate space.

    SAFETY MECHANISM FOR ROBOTIC BONE CUTTING

    公开(公告)号:US20220218421A1

    公开(公告)日:2022-07-14

    申请号:US17569957

    申请日:2022-01-06

    Abstract: Methods and systems for providing a safety mechanism for a robotically controlled surgical tool. Embodiments of the methods use sensors to detect parameters that vary by the tissue traversed by a surgical tool. The sensors detect signals arising from the interaction of the surgical tool with the tissue and provide this information to a robotic controller. For example, during drilling, the sensors may measure power, vibration, sound frequency, mechanical load, electrical impedance, and distance traversed according to preoperative measurements on a three-dimensional image set used for planning the tool trajectory. By comparing the detected output with that expected for the tool position based on the planned trajectory, identified discrepancies in output would indicate that the tool has veered from the planned trajectory. The robotic controller may then alter the tool trajectory, change the speed of the tool, or discontinue power to the tool, thereby preventing damage to underlying tissue.

Patent Agency Ranking