Abstract:
Various solutions for channel information feedback with prior information with respect to user equipment and network apparatus in mobile communications are described. An apparatus may receive a reference signal transmitted by a network side including at least one network node. The apparatus may obtain at least one selected basis. The apparatus may derive a channel response information observed by a receiving domain of the apparatus according to the reference signal. The apparatus may decompose the channel response information into a preferred domain. The apparatus may determine a simplified linear combination coefficient representation of the channel response information in the preferred domain according to the selected basis. The apparatus May report a compressed channel information to the network side based on the simplified linear combination coefficient representation and the preferred domain.
Abstract:
A synergetic communication method for relay node configuration and protocol stacks is proposed. A network node may generate a scheduling which indicates the relay node configurations associated with an aggregated group based on the capability information from a user equipment (UE). The scheduling may comprise different configurations for the relay nodes in the aggregated group. In addition, the network node may transmit or schedule the scheduling for controlling the aggregated group to the UE. The UE may transmit the capability information associated with the relay node(s) in the aggregated group to the network node. Therefore, the network node is able to configure the configuration for the relay node with limited capability.
Abstract:
This disclosure provides a user equipment (UE) and methods for channel state information (CSI) compression. Processing circuitry of the UE obtain a plurality of first channel matrices that each indicates CSI of a communication channel between the UE and a respective one of multiple transmission-reception-points (TRPs). The processing circuitry compresses each of the plurality of first channel matrices into a respective feature vector through one or more convolutional neural networks (CNNs), and concatenates the plurality of feature vectors into a joint feature vector. The processing circuitry compresses the joint feature vector into a compressed joint feature vector through one or more fully connected neural networks (FCNNs).
Abstract:
A User Equipment (UE), and associated method, including a wireless transceiver, configured to perform wireless transmission and reception to and from a cellular station. A controller is configured to use a first preamble to perform a synchronous transmission on a PRACH to the cellular station via the wireless transceiver, and use a second preamble to perform either of at least two different types of transmission, the two different types of transmission comprising an asynchronous transmission and a synchronous transmission to the cellular station via the wireless transceiver; wherein the controller is further configured to receive a random access response to the synchronous transmission from the cellular station via the wireless transceiver, and wherein a Timing Advance (TA) estimation is not required for the synchronous transmission.
Abstract:
A method deactivates secondary Component Carrier (CC) measurement in a communications apparatus providing wireless communications services via a first CC in a wireless network, wherein the communications apparatus includes a first signal processing component chain comprising a plurality of signal processing components and is configured for processing the RF signals for the first CC and a second signal processing component chain comprising a plurality of signal processing components. The method includes operations of determining a switch timing for turning on at least one of the signal processing components in the second signal processing component chain for performing a deactivated secondary CC measurement; performing the deactivated secondary CC measurement via the second signal processing component chain, wherein the secondary CC is not able to perform data transmission or reception during a deactivated state, and wherein the switch timing is determined according to a Discontinuous Reception (DRX) cycle.
Abstract:
A network control device includes a wireless communications module and a controller. The wireless communications module uses a preferred transmitting beam to communicate with a communications apparatus in one or more downlink opportunities corresponding to the preferred transmitting beam. The controller schedules signal or data to be transmitted in at least one downlink opportunity corresponding to the preferred transmitting beam. When scheduling signal or data to be transmitted, the controller further provides at least one training gap, in which the controller does not schedule any dedicated data to the communications apparatus, in the downlink opportunity corresponding to the preferred transmitting beam.
Abstract:
A communications apparatus includes a wireless communications module and a controller. The wireless communications module uses a preferred receiving beam determined in a beam training procedure to communicate with a network control device and further monitors one or more candidate receiving beam(s) by using the one or more candidate receiving beam(s) to receive signals from the network control device. The controller calculates a detection metric for the preferred receiving beam and the preferred control beam and a detection metric for each combination of the one or more candidate receiving beam(s) and the preferred control beam, and determines whether to change the preferred receiving beam according to the detection metrics for the preferred receiving beam and the preferred control beam and for each combination of the one or more candidate receiving beam(s) and the preferred control beam.
Abstract:
A network control device. A wireless communications module receives a plurality of first signals each including information regarding a preferred transmitting beam in a first beam level determined by a communications apparatus. A controller selects a group of communications apparatuses to join a 1-to-many beam training according to the received first signals and selects one or more transmitting beams in a second beam level to be trained. The communications apparatuses in the group have the same preferred transmitting beam in the first beam level and the transmitting beam(s) in the second beam level associates with the preferred transmitting beam in the first beam level. The wireless communications module further uses the transmitting beam(s) in turn to transmit signals to perform the 1-to-many beam training for training the transmitting beam(s) in the second beam level among the group of communications apparatuses at the same time.
Abstract:
A communications apparatus. A first radio module communicates with a first wireless network and provides wireless communications services. A second radio module communicates with a second wireless network and provides wireless communications services. At least two antennas shared by the first radio module and the second radio module. When the first radio module operates in a connected mode and when the timing of the first radio module performing the first receiving activity coincides with the timing of the second radio module performing a second receiving activity, the first radio module reports a value of 1 for a Rank Indicator to the first wireless network at least once before the second radio module is to perform the second receiving activity, and then the second radio module uses one of the antennas to perform the second receiving activity.
Abstract:
A method for deactivated secondary Component Carrier (CC) measurement in a communications apparatus providing wireless communications services via a first CC in a wireless network includes: determining a switch timing to perform bandwidth extension or frequency adjustment required for performing a deactivated secondary CC measurement; extending an operation bandwidth or adjusting a center frequency of at least one signal processing component included in the communications apparatus at the switch timing, wherein an operation band defined by the operation bandwidth and the center frequency of the signal processing component covers at least a bandwidth of the secondary CC; and performing the deactivated secondary CC measurement after extending the operation bandwidth or adjusting the center frequency. The secondary CC is not able to perform data transmission or reception during a deactivated state.