Abstract:
Aspects of the disclosure provide an apparatus that includes a transceiver circuit and a processing circuit. The transceiver circuit is configured to receive a trigger signal this is transmitted by another apparatus. The trigger signal triggers transmissions by a first group of apparatuses including the apparatus, and defers transmissions by a second group of apparatuses that interfere the transmissions by the first group of apparatuses. The processing circuit is configured to, in response to the trigger signal, generate a frame with a first preamble structure that is different from a second preamble structure that is used by the second group of apparatuses, and provide the generated frame to the transceiver circuit for transmission.
Abstract:
Aspects of the disclosure provide an apparatus that includes a transceiver circuit and a processing circuit. The transceiver circuit is configured to receive a trigger signal this is transmitted by another apparatus. The trigger signal triggers transmissions by a first group of apparatuses including the apparatus, and defers transmissions by a second group of apparatuses that interfere the transmissions by the first group of apparatuses. The processing circuit is configured to, in response to the trigger signal, generate a frame with a first preamble structure that is different from a second preamble structure that is used by the second group of apparatuses, and provide the generated frame to the transceiver circuit for transmission.
Abstract:
A plurality of interference measurements are obtained at a first communication device. The interference measurements correspond to interference experienced by the first communication device. A filter is applied to the plurality of interference measurements to obtain a filtered interference measurement, wherein the filtered interference measurement is a function of a current interference measurement and one or more past interference measurements. A channel quality indicator (CQI) corresponding to a communication channel between the first communication device and a second communication device is determined based at least in part on the filtered interference measurement. The CQI is transmitted from the first communication device to the second communication device.
Abstract:
Systems and techniques relating to wireless communications are described. A described technique includes sensing a group of channels for a channel contention operation that acquires two or more channels of the group of channels and detects a busy channel of the group of channels; determining a channel bonding indicator based on the channel contention operation; generating a preamble portion of a frame that includes the channel bonding indicator; generating a data portion of the frame, and transmitting the frame to one or more devices. Generating the preamble portion can include duplicating a legacy preamble on each of the acquired channels within the preamble portion. Generating the data portion can include setting first subcarriers that correspond to the acquired channels to data values, and setting second subcarriers that correspond to the busy channel to null values for at least a portion of the data portion of the frame.
Abstract:
System and methods are provided for managing universal-serial-bus (USB) data transfers. An example system includes a non-transitory computer-readable storage medium including a first scheduling queue for sorting endpoints and a host controller. The host controller is configured to: store a plurality of endpoints for data transfers to the storage medium, an endpoint corresponding to a portion of a USB device; sort the plurality of endpoints in a first order; generate a first transmission data unit including multiple original data packets, the original data packets being allocated to the plurality of endpoints based at least in part on the first order; and transfer the first transmission data unit.
Abstract:
A method includes receiving in a mobile communication terminal signals from multiple cells that coordinate transmission of the signals with one another in a Cooperative Multipoint (CoMP) scheme. At least first and second Channel Quality Indicators (CQIs), for respective communication channels over which the signals are received, are calculated in the terminal based on the received signals. The second CQI is differentially encoded relative to the first CQI. Feedback information, including the first CQI and the differentially-encoded second CQI, is transmitted from the terminal.
Abstract:
A method includes receiving in a mobile communication terminal signals from multiple cells that coordinate transmission of the signals with one another in a Cooperative Multipoint (CoMP) scheme. At least first and second Channel Quality Indicators (CQIs), for respective communication channels over which the signals are received, are calculated in the terminal based on the received signals. The second CQI is differentially encoded relative to the first CQI. Feedback information, including the first CQI and the differentially-encoded second CQI, is transmitted from the terminal.
Abstract:
A plurality of interference measurements are obtained at a first communication device. The interference measurements correspond to interference experienced by the first communication device. A filter is applied to the plurality of interference measurements to obtain a filtered interference measurement, wherein the filtered interference measurement is a function of a current interference measurement and one or more past interference measurements. A channel quality indicator (CQI) corresponding to a communication channel between the first communication device and a second communication device is determined based at least in part on the filtered interference measurement. The CQI is transmitted from the first communication device to the second communication device.