Abstract:
A massive antenna-based pattern/polarization beam division multiple access method and an apparatus performing the same are provided. The massive antenna-based pattern/polarization beam division multiple access method includes generating a plurality of beam sectors for each antenna array by using a plurality of pattern/polarization antenna arrays and performing MIMO transmission in each of the plurality of beam sectors, wherein the plurality of pattern/polarization antenna arrays each have a different radiation pattern.
Abstract:
Provided is a joint pattern beam sectorization method and apparatuses for performing the same, wherein the joint pattern beam sectorization method including generating, in a service target region, a pattern sector corresponding to an antenna array including antennas having an identical radiation pattern by using the antenna array and generating pattern beam sectors in the pattern sector through a beamforming using the antennas.
Abstract:
Provided are an orbital angular momentum (OAM)-based transmitter, receiver, and communication method employing a radial concentric uniform circular array (UCA). The OAM-based communication method includes transmitting, by a transmitter, OAM multimode signals through a UCA-based transmitting antenna and receiving, by a receiver, the OAM multimode signals through a radial concentric UCA structure antenna including a plurality of UCA antennas. The plurality of UCA antennas each have the same number of antenna elements, and antenna elements having the same sequence number in the plurality of UCA antennas are on the same radial line in the radial concentric UCA structure antenna.
Abstract:
A coordinated transmission method based on beam division multiple access and an apparatus performing the same are disclosed. The coordinated transmission method in a beam division multiple access environment, which divides a service target region into a plurality of beam sectors through a plurality of antenna arrays having at least one of a pattern characteristic and a polarization characteristic, includes receiving a coordination request from a user terminal located in the service target region and performing any one among a macro diversity operation, a coordinated silence operation, and a coordinated beamforming operation for the user terminal based on an interference level included in the coordination request.
Abstract:
Methods for determining a genetic identity of a cell, tissue, organ, or organism, based on type, position, and size of every occurrence of at least one repetitive element in the genome of the cell, tissue, organ, or organism. The methods can include using a computer to generate a graphical representation of the genetic identity of the cell, tissue, organ, or organism, and comparing genetic identity at different times/spaces. Also described herein is a computer implemented Universal Genome Information System, which serves as a genome-RE/TRE information management and analysis platform.
Abstract:
A receiving apparatus based on pattern/polarization beam division multiple access (BDMA) including an antenna configured to receive a reference signal related to at least one of patterns and polarizations of a plurality of antennas included in a transmitting apparatus, and configured to transmit channel information, and a controller configured to select a particular antenna group among a plurality of antenna groups that are grouped from the plurality of antennas included in the transmitting apparatus using the reference signal, and configured to generate the channel information corresponding to the particular antenna group.
Abstract:
Provided is a joint pattern beam sectorization method and apparatuses for performing the same, wherein the joint pattern beam sectorization method including generating, in a service target region, a pattern sector corresponding to an antenna array including antennas having an identical radiation pattern by using the antenna array and generating pattern beam sectors in the pattern sector through a beamforming using the antennas.
Abstract:
A Distributed control method and a distributed communication system for wireless charging of an electric vehicle in moving are provided. For electric vehicle moving on roads in which segmented power supply lines are buried, wireless charging is provided by controlling the switching of power supply segments in real time using a mobile communication system. A distributed communication system controls such process. Since the switching of the power supply segment is distributed and controlled in real time by using a mobile communication system, continuous and stable wireless charging can be achieved without interruption of charging for an electric vehicle in moving.
Abstract:
A random access method in a beam division multiple access (BDMA) system including: receiving, by a terminal, a reference signal of at least one beam sector transmitted from an access point (AP) device; estimating, by the terminal, whether the terminal is in a center area of the beam sector provided by the AP device or in the boundary area of the beam sector by using the strength of the reference signal; transmitting, by the terminal, a different preamble to the AP device in accordance with location information of whether the terminal is located in the center area or in the boundary area; and determining, by the AP device, a target beam sector for transmitting information about uplink resources to be used by the terminal, among a plurality of beam sectors on the basis of the received preamble.
Abstract:
Disclosed is a reinforcement learning-based resource allocation method for a wireless backhaul network, which is performed by a resource allocation apparatus. The method includes estimating locations of a plurality of base stations on the basis of channel state information (CSI) measured by the plurality of base stations; and allocating resources of the wireless backhaul network to the plurality of base stations using a reinforcement learning neural network having the locations as an input.