摘要:
An exhaust emission control system of an internal combustion engine includes: a bypass passage (22) provided in an exhaust passage (14) of the engine and arranged to bypass a main passage (16) as a part of the exhaust passage, a NOx adsorbent (28) provided in the bypass passage and adapted to adsorb at least NOx as one of components contained in exhaust gas, a channel switching device (30) that switches a channel of the exhaust gas between the main passage and the bypass passage, an adsorption control device (50) that controls the channel switching device, based on operating conditions of the engine, so as to cause the exhaust gas to flow through the bypass passage, and an adsorbing capability determining device (50) that determines, when the adsorbing capability of the NOx adsorbent degrades, whether the degradation in the adsorbing capability is a surmountable degradation from which the NOx adsorbent can recover, or an insurmountable degradation from which the NOx adsorbent cannot recover.
摘要:
An exhaust gas purification device has: a bypass passage (20) disposed in an exhaust passage (15) of an internal combustion engine (10); an adsorbent (21) which is disposed in the bypass passage (20), and adsorbs unburned components in exhaust gas at a low temperature and desorbs the adsorbed unburned components at a high temperature; and an exhaust gas purification catalyst (22) which is disposed in the exhaust passage (15) at a downstream side of a portion where the bypass passage (20) merges, and purifies unburned components in exhaust gas; and a desorption amount adjustment (19) unit that adjusts the desorption amount of unburned components adsorbed by the adsorbent (21) based on an integrated fuel cut air amount (fgs), which is an integrated value of air amount taken into a combustion chamber of the internal combustion engine (10) during execution of fuel cut.
摘要:
The present invention relates to an exhaust emission control device having an NOx adsorbent, and makes it possible to judge whether the performance of the NOx adsorbent is degraded temporarily or permanently. The amounts of NOx and water adsorbed by the NOx adsorbent are measured during an actual operation of an internal combustion engine. A reference line indicating the correlation between a preselected water adsorption amount and NOx adsorption amount is then referenced to determine a reference value y0 of the NOx adsorption amount that corresponds to a measured value x1 of the water adsorption amount. Next, a measured value y1 of the NOx adsorption amount is compared against the reference value y0 to output a signal in which the result of the comparison is reflected.
摘要:
An exhaust gas purification device has: a bypass passage (20) disposed in an exhaust passage (15) of an internal combustion engine (10); an adsorbent (21) which is disposed in the bypass passage (20), and adsorbs unburned components in exhaust gas at a low temperature and desorbs the adsorbed unburned components at a high temperature; and an exhaust gas purification catalyst (22) which is disposed in the exhaust passage (15) at a downstream side of a portion where the bypass passage (20) merges, and purifies unburned components in exhaust gas; and a desorption amount adjustment (19) unit that adjusts the desorption amount of unburned components adsorbed by the adsorbent (21) based on an integrated fuel cut air amount (fgs), which is an integrated value of air amount taken into a combustion chamber of the internal combustion engine (10) during execution of fuel cut.
摘要:
A moisture adsorbing device 1 comprising a type Y zeolite, and an NOx adsorbing device 2 being put in place on an exhaust-gas downstream side of the moisture adsorbing device 1, and comprising a zeolite that includes a transition metal ion in the cation exchange sites are included. In NOx adsorbing apparatuses, since the less the moisture content in exhaust gases is the more the NOx adsorbing capability improves, the NO adsorbing capability in low-temperature region is improved especially by means of the combination with a moisture adsorbing device that comprises a type Y zeolite whose Al2O3 proportion is great and whose moisture adsorbing amount is great compared with the other zeolites.
摘要:
In a malfunction diagnosis device for an exhaust gas purification system including an exhaust gas purification catalyst disposed in the exhaust passage of an internal combustion engine, and a reductant supply device that supplies reductant to exhaust gas that flows in an upstream side of the exhaust gas purification catalyst, the degree of degradation of the exhaust gas purification catalyst is diagnosed by comparing the timing at which the bed temperature of the exhaust gas purification catalyst starts to rise due to the heat of moisture adsorption reaction, against a normal value.
摘要:
An exhaust gas purification apparatus which is installed in a flow channel of an exhaust gas discharged from an engine, includes: a first purification device that purifies one component contained in the gas; a heating device that heats the purification device to a predetermined temperature in a period from before the engine is started to a first point in time that is after the engine is started; control device that controls an air-fuel ratio of the gas so as to obtain a air-fuel ratio suitable for purifying the one component in a period from the time when the engine is started to a point in time that is on or after a time at which the purification device is heated to the predetermined temperature; and an adsorption device that communicates with the downstream of the first purification device and adsorbs another component contained in the gas.
摘要:
In a malfunction diagnosis device for an exhaust gas purification system including an exhaust gas purification catalyst disposed in the exhaust passage of an internal combustion engine, and a reductant supply device that supplies reductant to exhaust gas that flows in an upstream side of the exhaust gas purification catalyst, the degree of degradation of the exhaust gas purification catalyst is diagnosed by comparing the timing at which the bed temperature of the exhaust gas purification catalyst starts to rise due to the heat of moisture adsorption reaction, against a normal value.
摘要:
An object of the present invention, in an internal combustion engine equipped with a moisture adsorbent and a NOx adsorbent in series in order from the upstream side of an exhaust passage, is to provide an exhaust gas purifying apparatus for the internal combustion engine which can successfully prevent an adsorption capability of NOx from being inhibited by moisture and is capable of maintaining the NOx adsorption capability of the NOx adsorbent adequately. A main exhaust passage 14 through which exhaust gas exhausted from an internal combustion engine 10 flows is provided. A bypass passage 20 bypassing the main exhaust passage 14 is provided. A moisture adsorbent 24 and a NOx adsorbent 28 are provided in the bypass passage 20 in series in order from a side closer to the upstream connecting portion 20a. A switching valve 22 is controlled to prevent the exhaust gas from flowing into the NOx adsorbent 28 when it is judged that the desorption of the moisture from the moisture adsorbent 24 is started.
摘要:
An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine which can properly purge at least NOx of unpurified components contained in exhaust gas while considering characteristics of NOx desorbed from an adsorbent. A bypass passage 18 bypassing a main exhaust passage 12 of the internal combustion engine 10 is provided. A HC/NOx adsorbent 22 having a function of adsorbing HC and NOx is provided in the bypass passage 18. A second underfloor catalyst 30 is provided downstream of the adsorbent 22. A purge passage 26 branching off from the bypass passage 18 while connecting to an intake passage is provided. An exhaust switching valve 20 and a purge control valve 28 are provided as a flow path switching means that is capable of switching a flow target into which the exhaust gas flows between the main exhaust passage 12 and the bypass passage 18. If the purging operations are executed, the intake purging operation is first executed. After that, the intake purging operation is switched to the exhaust purging operation at a timing existing after the purge of NOx is completed and at the time point at which the temperature of the adsorbent becomes stable.