Abstract:
In an image capturing apparatus in which irradiation light emitted from a light source is projected onto an observation area through an irradiation window, reflection light of the irradiation light incident on the irradiation window and reflected from the window is detected and a liquid is discharged onto the irradiation window according to a result of the detection.
Abstract:
An image reading apparatus and method in which no complicated control is carried out and suitable adjustment of the color balance can be carried out in accordance with the type of a photographic material. First, the type of a photographic film to be read is acquired. When the photographic film is a negative film or a sepia-tone film, a filter for negative film is set on an optical axis of illumination light. When the photographic film is a positive film or a black-and-white film, a filter for positive film is set on the optical axis of illumination light. In either state, a film image on the photographic film is read.
Abstract:
An image reading apparatus and method is realized which can obtain light correction data with accurately and without involving a complicated operation. A turret including balance filters for a negative film and for a positive film, respectively, is provided in the image reading apparatus. When light correction data is acquired, the turret is controlled so that the positive-film balance filter is inserted and located on an optical axis L of light emitted from a lamp, and in a state in which a photographic film is not set in a film carrier, light correction data is generated based on image data outputted from a line CCD. At the time of reading images on the photographic film, when a negative film is used as the photographic film, the negative-film balance filter is inserted and located on the optical axis L, and when a positive film is used as the photographic film, the positive-film balance filter is inserted and located on the optical axis L. Further, light correction is performed for image data inputted from the line CCD using the above-described light correction data.
Abstract:
Light is irradiated onto a photographic film which is conveyed by a film carrier. A compressor generates cooling air for cooling the photographic film. A guide pipe guides the cooling air generated by the compressor to at least one of a region of the photographic film, onto which the light is irradiated, and a reverse surface of the region. In this way, since the cooling air generated by the compressor is guided to the photographic film, the photographic film can be cooled by the cooling air having large amount of flow, velocity of flow, or the like.
Abstract:
A photographic printer for displaying an image on a liquid crystal panel, irradiating the light from a light source on said liquid crystal panel and exposing said image on a photosensitive material for a predetermined exposure time by the light transmitted through said liquid crystal panel is disclosed. Further, a method for controlling an exposure in such a photographic printer is disclosed. Before displaying an image on the liquid crystal panel, the drive voltage for producing a predetermined transmitted light amount is measured. On the basis of the difference between the measured voltage and the theoretical voltage for producing the predetermined transmitted light amount, an offset value of the drive voltage is adjusted. Accordingly, the operational error of the printer due to temperature change, due to the difference of the light transmittance between crystal panels, or due to the difference of the characteristic of voltage v.s. light transmittance between crystal panels is reduced.