Abstract:
The present disclosure relates to a fluorine-doped tin oxide support, a platinum catalyst for a fuel cell comprising the same, and a method for producing the same. The present disclosure has a high electrical conductivity and electrochemical durability by doping fluorine to the tin oxide-based support through an electrospinning process. Thus, while resolving a degradation issue of the carbon support in the conventional commercially available platinum/carbon (Pt/C) catalyst, the present disclosure is designed to minimize an electrochemical elution of dopant or tin, which is a limitation of the tin oxide support itself and has excellent performance as a catalyst for a fuel cell.
Abstract:
Disclosed is a method for preparing a carbon-supported platinum-transition metal alloy nanoparticle catalyst using a stabilizer. According to the method, the transition metal on the nanoparticle surface and the stabilizer are simultaneously removed by treatment with acetic acid. Therefore, the method enables the preparation of a carbon-supported platinum-transition metal alloy nanoparticle catalyst in a simple and environmentally friendly manner compared to conventional methods. The carbon-supported platinum-transition metal alloy nanoparticle catalyst can be applied as a high-performance, highly durable fuel cell catalyst.
Abstract:
Disclosed is a method for preparing a carbon-supported metal oxide and/or alloy nanoparticle catalyst. According to the method, a carbon-supported metal oxide and/or alloy nanoparticle catalyst is prepared by depositing metal oxide and/or alloy nanoparticles on a water-soluble support and dissolving the metal oxide and/or alloy nanoparticles deposited on the water-soluble support in an anhydrous polar solvent containing carbon dispersed therein to support the metal oxide and/or alloy nanoparticles on the carbon. The anhydrous polar solvent has much lower solubility for the water-soluble support than water and is used to dissolve the water-soluble support. The use of the anhydrous polar solvent instead of water can prevent the water-soluble support present at a low concentration in the solution from impeding the support of the nanoparticles on the carbon, thus providing a solution to the problems of environmental pollution, high cost, and complexity encountered in conventional chemical and physical synthetic methods.
Abstract:
Disclosed is an alcohol mixture typed hydrocarbon based electrode binder for a polymer electrolyte membrane fuel cell. The binder may be directly applied to a hydrocarbon based electrolyte membrane of the same kind, and may exhibit a superior fuel cell performance over conventional hydrocarbon polymer binders using an organic solvent.
Abstract:
A composite polymer electrolyte membrane for a fuel cell may be manufactured by the following method: partially or totally filling the inside of a pore of a porous support with a hydrogen ion conductive polymer electrolyte solution by performing a solution impregnation process; and drying the hydrogen ion conductive polymer electrolyte solution while completely filling the inside of the pore with the hydrogen ion conductive polymer electrolyte solution by performing a spin dry process on the porous support of which the inside of the pore is partially or totally filled with the hydrogen ion conductive polymer electrolyte solution.
Abstract:
Provided is a catalyst for an oxygen reduction reaction, including an alloy in which two metals are mixed, in which the corresponding alloy is an alloy of iridium (Ir); and silicon (Si), phosphorus (P), germanium (Ge), or arsenic (As). The corresponding catalyst for the oxygen reduction reaction may have excellent price competitiveness while exhibiting a catalytic activity which is equal to or similar to that of an existing Pt catalyst. Accordingly, when the catalyst is used, the amount of platinum catalyst having low price competitiveness may be reduced, so that a production unit cost of a system to which the corresponding catalyst is applied may be lowered.
Abstract:
The present disclosure relates to a PtAu nanoparticle catalyst heat-treated in the presence of carbon monoxide (CO) and a method for preparing same. Since the PtxAuy nanoparticle catalyst heat-treated under CO atmosphere has high Pt surface area and superior oxygen reduction reaction (ORR) activity, a high-efficiency, high-quality fuel cell can be achieved by applying the catalyst to a fuel cell.
Abstract:
Disclosed are an oxidizing electrode, a water electrolysis device including the same and a method for manufacturing the same. According to exemplary embodiments of the present disclosure, there is provided an oxidizing electrode with improved performance at low loadings of noble metals, especially, ruthenium (Ru) and iridium oxide, in which a ruthenium (Ru) layer and an iridium oxide layer formed on a substrate by electrodeposition in a sequential order are supported by electrochemical reaction rather than physical bonding.
Abstract:
A fuel cell catalyst including a conductive carrier and core-shell nanoparticles supported on the carrier. The core includes platinum and a transition metal and the shell includes a secondary metal. An electrochemical specific activity measured at a voltage of 0.05 V to 1.05 V (vs. RHE) in a potential range, at a scan rate of 5 mV/s and a rotation rate of 1,600 rpm in an O2-saturated 0.1 M HClO4 electrolyte solution is 0.3 mA/cm2 to 0.6 mA/cm2, and a mass activity is 0.05 mA/μg to 0.08 mA/μg.
Abstract:
The present disclosure provides a high-performance electrode for water electrolysis using electrospray, a membrane electrode assembly including the same, a water electrolysis device including the electrode for water electrolysis, and a method for manufacturing the electrode for water electrolysis. The present disclosure is to provide a membrane electrode assembly (MEA) having increased porosity by using electrospray, and to apply the membrane electrode assembly to electrolysis.