Abstract:
According to one embodiment, there is provided a spin torque oscillator including an oscillation layer formed of a magnetic material, a spin injection layer formed of a magnetic material and configured to inject a spin into the oscillation layer, and a current confinement layer including an insulating portion formed of an oxide or a nitride and a conductive portion formed of a nonmagnetic metal and penetrating the insulating portion in a direction of stacking. The conductive portion of the current confinement layer is positioned near a central portion of a plane of a device region including the oscillation layer and the spin injection layer.
Abstract:
According to one embodiment, in a magnetic recording medium manufacturing method, an inversion liftoff layer and pattern formation layer are formed on a layer on which an inverted pattern is to be formed, a depressions pattern is formed by patterning the pattern formation layer and transferred to the inversion liftoff layer, the surface of the layer on which an inverted pattern is to be formed is exposed by removing the inversion liftoff layer from depressions, an inversion layer is formed on the inversion liftoff layer and exposed layer, and the inversion liftoff layer is removed, thereby forming, on the exposed layer, an inversion layer having a projections pattern obtained by inverting the depressions pattern.
Abstract:
According to one embodiment, a magnetic disk device includes a rotatable disk-shaped recording medium, a magnetic head including a write head having a main magnetic pole that applies a recording magnetic field to the recording medium, an assist element that assists magnetic recording by the main magnetic pole, and a plurality of thermal actuators that control a head gradient with respect to the recording medium, and a controller which includes a detection unit configured to detect deterioration of the magnetic head, and changes a head gradient of the magnetic head by the thermal actuator according to the detected deterioration.
Abstract:
According to one embodiment, a magnetic head includes a magnetic pole having a first surface, a first shield separated from the magnetic pole along the first surface, and a stacked body provided between the magnetic pole and the first shield. The stacked body includes a magnetic layer, and first and second conductive layers. The magnetic layer includes at least one selected from the group consisting of Fe, Co, and Ni. The first conductive layer contacts the magnetic pole and the magnetic layer, and is provided between the magnetic pole and the magnetic layer. The second conductive layer contacts the magnetic layer and the first shield, is provided between the magnetic layer and the first shield. The first shield has a first shield surface contacting the second conductive layer. A ratio of a length of the magnetic layer to a length of the first shield surface is 0.1 or more.
Abstract:
According to one embodiment, there is provided a magnetic recording medium manufacturing method including forming a resist layer on a magnetic recording layer, patterning the resist layer, forming a magnetic pattern by performing ion implantation through the resist layer, partially modifying the surface of the magnetic recording layer, removing the resist, applying a self-organization material to the surface of the magnetic recording layer and forming a dotted mask pattern, and patterning the magnetic recording layer.
Abstract:
According to one embodiment, a magnetic recording/reproducing device includes a plurality of magnetic recording medium each including a recording surface, a plurality of assisted magnetic recording heads each provided with the recording surface in order to perform assisted recording, and an assisting amount adjustment part connected to the assisted magnetic recording heads in order to adjust an assisting amount of each assisted magnetic recording head corresponding to a recording capacity of the recording surface.
Abstract:
A magnetic disk drive includes first and second disks having respective first and second surfaces, a first head including a first write head that writes data on the first surface at a first recording density, and a first assist element that generates a first energy for increasing a write performance by the first write head, a second head including a second write head that writes data on the second surface at a second recording density, and a second assist element that generates a second energy for increasing a write performance by the second write head, and a controller that changes one of the first and second recording densities based on a first recording capacity up to which the first head is capable of writing on the first disk, a second recording capacity up to which the second head is capable of writing on the second disk, and a target capacity.
Abstract:
A magnetic recording apparatus includes a disk-shaped recording medium with a magnetic recording layer, and a recording head that magnetically writes data onto the magnetic recording layer and includes a main magnetic pole, a write shield facing the main magnetic pole and positioned with a writing gap disposed between the main magnetic pole and the write shield, and a magnetic flux control layer disposed inside the write gap between the main magnetic pole and the writing shield. The magnetic flux control layer includes a first layer including a first metal and contacting one of the main magnetic pole and the writing shield, a second control layer, and a third layer including a second metal and contacting the other one of the main magnetic pole and the writing shield. The second control layer includes a magnetic metal and contacts the first layer and the third layer.
Abstract:
A perpendicular magnetic recording medium according to an embodiment includes a substrate and perpendicular magnetic recording layer. The perpendicular magnetic recording layer includes a recording portion and non-recording portion. The recording portion has patterns regularly arranged in the longitudinal direction, and includes magnetic layers containing Fe or Co and Pt as main components, and at least one additive component selected from Ti, Si, Al, and W. The non-recording portion includes oxide layers formed by oxidizing the side surfaces of the magnetic layers, and nonmagnetic layers formed between the oxide layers.
Abstract:
According to one embodiment, a magnetic head includes a main pole configured to apply a recording magnetic field to a recording layer included in a recording medium, a trailing shield opposing the main pole in a down-track direction, with a write gap interposed therebetween, a pair of side shields opposing the main pole on opposite sides of the main pole in a cross-track direction, with respective gaps interposed therebetween, a recording coil configured to cause the main pole to generate a magnetic field, a first high-frequency oscillator interposed between the main pole and one of the side shields, and a second high-frequency oscillator interposed between the main pole and the other side shield.