Abstract:
A system and method are shown for registering a subscriber unit (10) in an integrated communication system having a number of subsystems (30, 50) that are capable of operating independently. The subscriber unit (10) stores in a memory (77) a list of outbound subsystems ordered according to the subscriber unit's preference for using the subsystem as a outbound home subsystem to which the subscriber unit registers. An inbound preferred home subsystem list is also stored in the memory (77). In order to register to the integrated system, the subscriber unit identifies the most preferred outbound subsystem that covers the current location of the subscriber unit as its outbound home subsystem. If the outbound home subsystem is a two-way subsystem having an inbound channel accessible by the subscriber unit, the subscriber unit uses the inbound channel of the outbound home subsystem to communicate the registration information to the integrated system. If the outbound home subsystem is a one-way subsystem, the subscriber unit utilizes the inbound preferred home subsystem list to identify the most preferred inbound subsystem covering the current location of the subscriber for use in communicating the new registration information to the integrated subsystem.
Abstract:
In a system controller (102) for scheduling message traffic for transmission to a plurality of selective-call radios (106) in a radio communication system (100), a set of interference coefficients is determined in which an interference coefficient is a measure of transmission interference at a first transmission unit (202) of a pair of transmission units (202) from a second transmission unit (202) of the pair of transmission units (202). A set of transmission unit assignments is modified to establish an assignment of a proposed transmission unit (202). The assignment is determined from the set of interference coefficients.
Abstract:
A two-way messaging system (100) having a plurality of message subscriber units (500) and a base station (220) in each of a plurality of cells (210). The base station has a transmitter (224) for transmitting messages in an associated cell (210) and a receiver (228) associated therewith for receiving response signals from message subscriber units in a cell. A system controller (300) is coupled to each base station (220) and has a memory (320) for storing the customer paging area data for each message subscriber unit. The system controller (300) receives message requests and automatically updates the customer paging area data for each message subscriber unit (500) by tracking the mobility pattern of each message subscriber unit (500) in the messaging system coverage area (200).
Abstract:
In order to allocate frequency channels to transmitter units, the transmitter units are grouped in zones, each zone having one or more transmitter units (10, 20, 30) therein. A system controller (40) calculates a zone priority value which is a function of the zone's message traffic level and message latency. The zone priority value determines the order in which a zone is assigned a frequency channel. A channel priority value is calculated for each channel or sub-channel that can be accessed by the transmitter units (10, 20, 30) in the zone based on a probability of success and a mean quality margin value wherein the priority value of a channel determines the order in which an available channel is considered for assignment to a zone. A proposed channel is assigned to a given zone only if the proposed channel passes a channel quality check. The channel quality check may be based on co-channel and adjacent channel interference values. Alternatively, the channel quality check may be based on a determination of whether a channel proposed for assignment to a given zone is currently in use by another zone that is correlated with the given zone. Zones are merged and divided in order to provide increasing system capacity and better channel quality as the customer demands grow.
Abstract:
A system and method are shown for selecting an outbound subsystem and an inbound subsystem to be used to communicate between a subscriber unit (10) and an integrated communication system having a number of subsystems (30, 50) that are capable of operating independently. The subscriber unit (10) stores in a memory (77) for each of the different types of messages that the subscriber unit (10) can handle, a list of the subsystems that can be used to communicate the message type wherein each list is ordered according to the subscriber unit's preference for using a subsystem for outbound messages of the particular type. When the subscriber unit receives control information from the integrated system identifying a particular type of message that the system expects to communicate to the subscriber unit, the subscriber unit identifies at least one outbound subsystem in the list stored for the received message type covering the area in which the subscriber unit is located. The subscriber unit then communicates this information to the integrated subsystem using an inbound channel of the most preferred identified subsystem having one. If none of the identified subsystems includes an inbound channel the subscriber unit identifies the most preferred inbound subsystem that the subscriber unit can access regardless of message type.
Abstract:
A communication system (100) for reallocating frame assignments of a receiver (140). A message receiver (108) receives messages designating the receiver (140) and a transmitter (120) transmits a signal to the plurality of receivers (140). The signal has a plurality of frames (200), each has a frame identifier (402), an owner identifier (404), a frame lending offset (406) and a frame borrowing offset (408). A queue controller (132) measures a parameter indicating a traffic on each frame (200) to determine a lending threshold and a borrowing threshold. A processor (109) identifies a frame (603) with traffic below the lending threshold and another frame (605) with traffic exceeding the borrowing threshold and calculates the frame lending and borrowing offsets. A message formatter (114) encodes the frame identifier (402), the owner identifier (404), the frame lending and borrowing offset (406, 408) in the signal and a message allocator (134) distributes the messages.
Abstract:
A communication system has a hierarchical system of nodes organized into multiple node trees (800-806, 820-826, and 835), the communication system for completing calls between various ports (810, 812, 826) for interfacing to various transceivers (840). The method used in the hierarchical system is capable of tracking the location of the transceiver as it moves between ports and trees of the system while substantially reducing the size and modification of a data base for tracking the location of the transceiver. The communication system provides a method of linking root nodes (800, 820, 835) of various trees while providing for the advantages of a reduced amount of memory necessary for tracking transceiver movement through the system. The method allows establishment and growth of node trees in various geographic locations while providing for links between the root nodes of the trees.
Abstract:
A handset (24, 25) in a radio communication system (20) determines the quality of a channel (500 and 502) in response to an RSSI signal generated by a receiver (174) in combination with either an eye closure measurement (510) or a bit error rate detected by a CRC codeword in received digital information (502). The battery operated handset is also capable of conserving scanning power while operating in an area having high channel quality (520, 560, 566). The handset also has a method for determining the amount of handovers between base stations (21, 22, 23) by use of dual channel quality thresholds (582, 590) which require a higher quality threshold for establishing communication with a base station and a reduction in channel quality before a handover to a new base station.
Abstract:
In order to allocate frequency channels to transmitter units, the transmitter units are grouped in zones, each zone having one or more transmitter units (10, 20, 30) therein. A system controller (40) calculates a zone priority value which is a function of the zone's message traffic level and message latency. The zone priority value determines the order in which a zone is assigned a frequency channel. A channel priority value is calculated for each channel or sub-channel that can be accessed by the transmitter units (10, 20, 30) in the zone based on a probability of success and a mean quality margin value wherein the priority value of a channel determines the order in which an available channel is considered for assignment to a zone. A proposed channel is assigned to a given zone only if the proposed channel passes a channel quality check. The channel quality check may be based on co-channel and adjacent channel interference values. Alternatively, the channel quality check may be based on a determination of whether a channel proposed for assignment to a given zone is currently in use by another zone that is correlated with the given zone. Zones are merged and divided in order to provide increasing system capacity and better channel quality as the customer demands grow.
Abstract:
In order to allocate frequency channels to transmitter units, the transmitter units are grouped in zones, each zone having one or more transmitter units (10, 20, 30) therein. A system controller (40) calculates a zone priority value which is a function of the zone's message traffic level and message latency. The zone priority value determines the order in which a zone is assigned a frequency channel. A channel priority value is calculated for each channel or subchannel that can be accessed by the transmitter units (10, 20, 10) in the zone based on a probability of success and a mean quality margin value wherein the priority value of a channel determines the order in which an available channel is considered for assignment to a zone. A proposed channel is assigned to a given zone only if the proposed channel passes a channel quality check. The channel quality check may be based on co-channel and adjacent channel interference values. Alternatively, the channel quality check may be based on a determination of whether a channel proposed for assignment to a given zone is currently in use by another zone that is correlated with the given zone. Zones are merged and divided in order to provide increasing system capacity and better channel quality as the customer demands grow.