Abstract:
A multiple-antenna device is provided, comprising: a printed circuit board having a ground plane configured to provide electromagnetic isolation between a first side of the printed circuit board and a second side of the printed circuit board; a first non-conductive support member formed over the first side of the printed circuit board; a second non-conductive support member formed over the second side of the printed circuit board; a first antenna formed over the first non-conductive support member; and a second antenna formed over the second non-conductive support member, wherein the first antenna is electrically connected to a first feed point on a first portion of the printed circuit board that is not connected to the ground plane, and wherein the second antenna is electrically connected to a second feed point on a second portion of the printed circuit board that is not connected to the ground plane.
Abstract:
A method for operating a subscriber unit that communicates with a code division multiple access (CDMA) wireless network is provided. At the subscriber unit, synchronization information is encoded with a CDMA code. The CDMA encoded synchronization information is transmitted from the subscriber unit in discrete repeating intervals. The discrete repeating intervals are separated by other discrete repeating intervals during which the subscriber unit does not transmit synchronization information.
Abstract:
A service option overlay for a CDMA wireless communication in which multiple allocatable subchannels are defined on a reverse link by assigning different code phases of a given long pseudonoise (PN) code to each subchannel. The instantaneous bandwidth needs of each on-line subscriber unit are then met by dynamically allocating none, one, or multiple subchannels on an as needed basis for each network layer connection. The system efficiently provides a relatively large number of virtual physical connections between the subscriber units and the base stations on the reverse link for extended idle periods such as when computers connected to the subscriber units are powered on, but not presently actively sending or receiving data. These maintenance subchannels permit the base station and the subscriber units to remain in phase and time synchronism. This in turn allows fast acquisition of additional subchannels as needed by allocating new code phase subchannels. Preferably, the code phases of the new channels are assigned according to a predetermined code phase relationship with respect to the code phase of the corresponding maintenance subchannel.
Abstract:
The present invention provides for making code rate adjustments and modulation type adjustments in a pseudonoise (PN) encoded CDMA system. Coding rate adjustments may be made by changing the number of information bits per symbol, or Forward Error Code (FEC) coding rate. A forward error correction (FEC) block size is maintained at a constant amount. Therefore, as the number of information bits per symbol are increased, an integer multiple of bits per epoch is always maintained. The scheme permits for a greater flexibility and selection of effective data rates providing information bit rates ranging from, for example, approximately 50 kilobits per second to over 5 mega bits per second (Mbps) in one preferred embodiment.
Abstract:
A technique for efficient implementation of pilot signals on a reverse link in a wireless communication system. An access channel is defined for the reverse link such that within each frame, or epoch, a portion is dedicated to sending only pilot symbols. Another portion of the frame is reserved for sending mostly data symbols; however, within this second portion of the frame, additional pilot symbols are interleaved among the data symbols. The pilot symbol or preamble portion of the access channel frame allows for efficient acquisition of the access signal at the base station, while providing a timing reference for determining the effects of multipath fading. In particular, a pilot correlation filter provides a phase estimate from the pilot symbols in the preamble portion, which is then used to decode the data symbols in the payload portion. An access acquisition portion of the receiver uses the phase estimates provided by the pilot correlation filter to process the output of a data symbol correlation filter. The additional pilot symbols embedded in the payload portion are used in a cross product operation to further resolve the effects of multipath fading.
Abstract:
A technique for implementing closed loop power control in a wireless system using a modulation that requires synchronization over the radio channel, which dynamically assigns coded channels on a demand basis. The technique maintains a proper power level, even when no traffic channels are allocated, by determining a link quality metric based upon the reverse link power received. This determination is made in response to a heartbeat signal sent at a rate which is only sufficiently fast to maintain code phase lock, for example, depending upon the expected maximum rate at which the subscriber unit will travel.
Abstract:
Multiple field units in a CDMA system are synchronized for communication with a base station using shared forward and reverse link channels. In an illustrative embodiment, each field unit is assigned a time slot in a forward link channel to receive messages from the base station. Likewise, each field unit is assigned a time slot on a common reverse link channel for transmitting messages to the base station. Timing alignment and power level control among each of many field units and the base station is achieved by analyzing messages received at the base station in a corresponding time slot as transmitted by each field unit. Thereafter, a message is transmitted from the base station in a corresponding time slot to a particular field unit for adjusting its timing or power level so that future messages transmitted from the field unit are received in the appropriate time slot at the base station at a desired power level. In this way, minimal resources are deployed to maintain communication and precise synchronization between a base station and each of multiple users, minimizing collisions between field units transmitting in adjacent time slots on the reverse link. This method reduces the frequency a field unit must rely on the use of a slotted aloha random access channel according to IS-95.
Abstract:
An adaptive antenna used in a receive only mode with a separate omnidirectional transmit antenna. The arrangement is especially effective for small, handheld wireless devices. The transmit antenna maybe integrated with the receive array by utilizing a horizontally polarized transmit and vertically polarized receiver ray. In other embodiments, the transmit antenna may be physically separate and not integrated with the receive array. In either case there is separate receive and transmit signal port as an interface to radio transceiver equipment. The use of an adaptive antenna in the receive only direction has the potential to increase forward links capacity to levels equal to or greater than reverse link capacity. This allows for a significant increase in the overall number of users that may be active at the same time in a wireless system.
Abstract:
Data rate allocation decisions are made for a communications channel, such as a wireless reverse link connection. A first parameter used in this determination is a path loss, which is determined by the following process. First, a message is sent from a first station to a second station, such as on a paging channel. The message indicates a forward Effective Radiated Power (ERP) of a pilot signal transmitted by the first station. The second station then determines the received signal strength of this pilot signal, taking into account receiver gains. The path loss can then be estimated by the second station as the difference between the forward ERP data value that it received and the detected received pilot power. The second station also then preferably determines a transmit power level when transmitting a message back to the first station. This transmit power level information is encoded as a digital data word together with the forward path loss information as calculated by the first station. Upon receipt of these two pieces of information by the first station, the forward path loss estimate as calculated by the second station, and the output power value of the second station, the first station can then determine the amount of excess power available at the field unit. This excess power difference is indicative of the amount of dynamic range available in the transmit power amplifier in the particular second station. With this information, the first station can then make a determination as to whether coding rates which require a higher dynamic range will be acceptable for use by the particular second station.
Abstract:
A technique for allowing a first and second group of users to share access to a communication channel such as a radio channel. A first group of users is typically a legacy group of users such as those using digital CDMA cellular telephone equipment. The second group of users are a group of data users that code their transmissions in different formats optimized for data functionalities. The first group of users share one modulation structure such as, on a reverse link, using unique phase offsets of a common pseudorandom noise (PN) code. The second group of users share another modulation structure but in a manner that is consistent and compatible with the users of the first group. Specifically, the users of the second group may all use the same PN code and code phase offset. However, they are uniquely identified such as, for example, assigning each of them a unique orthogonal code.