Abstract:
Outer loop/weighted open loop power control apparatus controls transmission power levels in a spread spectrum time division duplex communication user equipment (UE). The user equipment receives a communication including an transmitted power level and measures its received power level. Based in part on the measured power level and the transmitted power level, a path loss estimate is determined. A quality of the path loss estimate is also determined. The transmission power level for a communication from the user equipment is based on in part weighting the path loss estimate in response to the estimate's quality.
Abstract:
A spread spectrum time division duplex user equipment uses frames having time slots for communication. The user equipment receives power commands and a first communication having a transmission power level in a first time slot. A power level of the first communication is measured as received. A pathloss estimate is determined based on in part the measured received first communication power level and the first communication transmission power level. A transmission power level for the second communication in a second time slot form the user equipment is set based on in part the pathloss estimate weighted by a quality factor adjusted by the power command. The quality factor decreases as a number of time slots between the first and second time slots increases.
Abstract:
A user equipment (UE) employs weighted open loop power control by receiving a communication and measuring its received power level. Based on, in part, the received communication's power level and the communication's transmission power level, a path loss estimate is determined. A quality of the path loss estimate is also determined. The transmission power level for a communication from the UE is based, in part, on weighting the path loss estimate in response to the estimate's quality.
Abstract:
A method of encoding at least one input bit set of ordered bits with permutation position integers comprising encoding the input bit set using a first encoder having a multi-state register to provide a first output; selectively reordering the input bit set using an interleaver to provide a reordered input bit set; and encoding the reordered input bit set using a second encoder having a multi-state register to provide a second output; whereby the value of said second encoder register is the same as the value of said first encoder register upon completion of the procedure.
Abstract:
A base station employing weighted open loop power control receives a communication and measures its received power level. Based on, in part, the received communication's power level and the transmission power level of the communication, a path loss estimate is determined. A quality of the path loss estimate is also determined. The transmission power level for a communication from the base station is based, in part, on weighting the path loss estimate in response to the quality of the estimate.
Abstract:
A transmitting station performs closed loop power control prior to a transmission pause. A closed loop transmission power level prior to the pause is determined. A reference signal is received and a received power level of the reference signal prior to and during the transmission pause is determined. The measured reference signal received power levels are compared to a transmit power level of the reference signals to produce a pathloss estimate of the reference signal prior to and during the transmission pause. A new transmit power level is determined by adjusting the closed loop transmission power level by a change between the prior to and during pathloss estimates. A transmission power level of the transmitting station is set to the determined new transmit power level. A communication is transmitted at the set transmission power level.
Abstract:
A wireless communication system and method for controlling transmission power to maintain a received signal-to-interference ratio (SIR) as close as possible to a target SIR. A received quality is maintained as close as possible to a target quality based on block error rate (BLER). When a target BLER is converted to an initial target SIR, an error may occur due to a channel condition mismatch, since the target SIR required for the target BLER varies with channel conditions. An outer loop power control process is used to set a target SIR for each coded composite transport channel (CCTrCH) based on the required target BLER. The process adjusts a SIR step size parameter to maximize the convergence speed of the process.
Abstract:
A method and system for assigning uplink (UL) slots to optimize time division duplex (TDD) UL power. In order to assure proper power control gain, UL slots are judiciously allocated close to the beacon slot. The UL slots may be allocated based on channel sensing. All users are sorted in the order of reducing fading losses. Sorting information is also used to allocate the UL slots. The UL slots may also be allocated based on signal interference information, code usage availability estimates and spread signal interference values. Alternatively, block error rate (BLER) and signal to interference ratio (SIR) measurements may be used to allocate the UL slots.
Abstract:
A wireless communication system and method for controlling transmission power to maintain a received signal-to-interference ratio (SIR) as close as possible to a target SIR. A received quality is maintained as close as possible to a target quality based on block error rate (BLER). When a target BLER is converted to an initial target SIR, an error may occur due to a channel condition mismatch, since the target SIR required for the target BLER varies with channel conditions. An outer loop power control process is used to set a target SIR for each coded composite transport channel (CCTrCH) based on the required target BLER. The process adjusts a SIR step size parameter to maximize the convergence speed of the process.
Abstract:
The present invention is a system and method which controls outer loop transmit power for transmission power of an uplink/downlink communication in a wireless communication system. The system receives a communication from a base station and determines an error rate on the received communication. The system then distinguishes between static and dynamic channels, produces a static adjustment value, and characterizes the dynamic channels to generate a dynamic adjustment value. The target power level is then adjusted by the static and dynamic adjustment values, setting the transmission power level.