Abstract:
A method, components and a system are provided for implementing power control for wireless communication transmissions that provides, inter alia, a remedy for the mismatch of initial transmission power for NRT data by estimating a bias error based and adjusting the transmission power by a compensation amount for an averaged bias error estimation over all data set transmissions, such as sequential Temp-DCH allocations in a UMTS system. An alternative approach for a UMTS system estimates the bias error at a RNC based on an averaged transmit code power measurement by a base station and applies a bias error compensation to the initial DL transmit power at the RNC.
Abstract:
A method system and components for outer loop power control particularly useful for non-real time/real time data services uses data transmitted in many bursts of short duration, called Temp-DCH allocations. A target metric, preferably, target SIR, is adjusted with differing step up and step down levels to converge on a relatively low steady state level of step up and step down target metric adjustments. The initial target SIR and the transient step size for target SIR adjustment is determined in a dynamic way in the outer loop power control for each Temp-DCH allocation of non-real time data.
Abstract:
The present invention is a system and method which controls outer loop transmit power for transmission power of an uplink/downlink communication in a spread spectrum time division communication. The system receives a communication from a base station and determines an error rate on the received communication. The system then distinguishes between static and dynamic channels, produces a static adjustment value, and characterizes the dynamic channels to generate a dynamic adjustment value. The target power level is then adjusted by the static and dynamic adjustment values, setting the transmission power level.
Abstract:
A wireless communication system and method for controlling transmission power to maintain a received signal-to-interference ratio (SIR) as close as possible to a target SIR. A received quality is maintained as close as possible to a target quality based on block error rate (BLER). When a target BLER is converted to an initial target SIR, an error may occur due to a channel condition mismatch, since the target SIR required for the target BLER varies with channel conditions. An outer loop power control process is used to set a target SIR for each coded composite transport channel (CCTrCH) based on the required target BLER. The process adjusts a SIR step size parameter to maximize the convergence speed of the process.
Abstract:
A wireless communication system and method for controlling transmission power to maintain a received signal-to-interference ratio (SIR) as close as possible to a target SIR. A received quality is maintained as close as possible to a target quality based on block error rate (BLER). When a target BLER is converted to an initial target SIR, an error may occur due to a channel condition mismatch, since the target SIR required for the target BLER varies with channel conditions. An outer loop power control process is used to set a target SIR for each coded composite transport channel (CCTrCH) based on the required target BLER. The process adjusts a SIR step size parameter to maximize the convergence speed of the process.
Abstract:
The present invention is a system and method which controls outer loop transmit power for transmission power of an uplink/downlink communication in a wireless communication system. The system receives a communication from a base station and determines an error rate on the received communication. The system then distinguishes between static and dynamic channels, produces a static adjustment value, and characterizes the dynamic channels to generate a dynamic adjustment value. The target power level is then adjusted by the static and dynamic adjustment values, setting the transmission power level.
Abstract:
A transmitting station receives a transmit power command and a reference signal. The transmit power command indicates an increase or decrease in transmission power for the transmitting station. A received power level of the reference signal is measured and the measured reference signal received power level is compared to a transmit power level of the reference signal to produce a pathloss estimate of the reference signal. A size of a change in transmit power level is determined using the pathloss estimate. A transmission power level of the transmitting station is adjusted in response to the transmit power command in an amount of the determined change in size. A communication is transmitted at the adjusted transmission power level.