Abstract:
The present invention is a method for adjusting a timing of at least one first base station to maintain synchronization with a neighboring base station. An estimation of a timing accuracy associated with each said at least one first base station with respect to said neighboring base station is determined. For each of the first base station having its timing accuracy over a threshold, a first message to transmit a communication burst is received by the first base station. The communication burst is then received by the neighboring base station and a measurement of an estimated time difference between the first base station and the neighboring base stations in response to a second message is made. The first base station's timing is then adjusted in response to the measurement.
Abstract:
A wireless digital communication system includes a base station in communication with a plurality of user equipment mobile terminals (UEs). The system prioritizes the forwarding of blocks of downlink data to designated ones of the UEs. The system employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provides optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink (DL) channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
Data transmission is optimized in a wireless digital communication system including a base station and a plurality of user equipment mobile terminals (UEs). Adaptive modulation and coding (AM&C) is employed to achieve improved radio resource utilization and provide optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink DL channel quality measurements only from those UEs with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
A user equipment has a transmitter for transmitting an access attempt signal and data packets over a random access channel. The access attempt signal requests a base station to permit the user equipment access to the random access channel. A receiver receives access control signals and access control modification signals transmitted from a base station. A controller is operatively coupled to the receiver and transmitter. The controller determines a wait period based on in part the received access control signals and access control modification signals and delays transmission of a subsequent access attempt signal for the wait period in response to an unsuccessful access attempt to the random access channel.
Abstract:
An ACK/NACK method and system for use in time division duplex (TDD) and frequency division duplex (FDD) systems. In high speed downlink packet access (HSDPA), based on the assignment of timeslots for the high speed shared information channel (HS-SICH), each user equipment (UE) can be assigned two (2) different channelization codes. It is then possible to adopt the signaling convention that one code represents acknowledge error-free (Ack) and the other code shall represent acknowledge error condition (Nack). The Node B is able to distinguish the presence of the transmitted channelization code as opposed to the channelization code which is not transmitted. The probability of error, using this invention is an order of a magnitude smaller than if the Ack/Nack were signaled using typical modulation techniques.
Abstract:
A criterion for biasing a binary decision requiring an unequal protection which utilizes a measured signal to interference ratio (SIR). The SIR may be derived from a determination of channel estimation. The SIR is compared against a threshold, the threshold being selected to bias the decision toward a NACK as opposed to an ACK determination. The technique is advantageous for providing biased binary decisions for high speed downlink packets (HSDP) but may be utilized for both uplink and downlink applications.
Abstract:
A system and method in a wireless communication network that efficiently determine when a message is intended for a particular wireless transmit/receive unit (WTRU). In accordance with the present invention, each WTRU is configured to receive communications on multiple communication channels. The WTRU receives and processes incoming signals on the multiple communication channels at the physical layer for an indication of which, if any, of the multiple communication channels is intended for the WTRU. If the indication is consistent with an expected indication for that mobile unit, the mobile unit accesses the particular communication channel and processes the information being sent therein.
Abstract:
A method for data related downlink signaling including selectively tailoring the UE ID to create a UE ID value, which is then added to a data field to create a data mask. This data mask is then further processed as the CRC field and transmitted with the data burst to provide CRC-related functions. An alternative embodiment discloses initializing a CRC generator with UE identification prior to CRC generation. This implicitly includes the UE ID within the CRC without requiring additional overhead signaling.
Abstract:
Sub-channels are defined for a physical random access channel of a wireless time division duplex communication system using code division multiple access. The sub-channels carry information between system users and a system network. A series of radio frames have a sequence of timeslots. For a particular timeslot number of the sequence, each sub-channel of the particular timeslot number is uniquely defined by one radio frame of the series.
Abstract:
Method and apparatus of network management using a perceived signal to noise indicator (PSNI), in preference to received signal strength indicator to provide physical layer measurements in a multitude of stations in the network, either by way of radio frequency power, or observed signal to noise plus interference from each access point, to report the measurements, to collect the measurements, and using the reported PSNI values as a signal quality indicator of delivered bit error rate or frame error rate to evaluate, reconfigure, and manage multiple stations in order to optimize the network or network performance.