Abstract:
A digital baseband (DBB) radio frequency (RF) receiver used for receiving and processing a wireless communication signal. The DBB RF receiver includes a demodulator, an analog to digital converter (ADC) and a digital cross-talk compensation module. The demodulator outputs analog real and imaginary signal components on real and imaginary signal paths, respectively, in response to receiving the communication signal. The ADC receives the analog real and imaginary signal components and outputs respective digital real and imaginary signal components. The digital cross-talk compensation module receives the digital real and imaginary signal components, estimates the cross-talk interference caused by each of the signal components, and outputs digital real and imaginary cross-talk compensated signal components.
Abstract:
A method and system for determining at least one DC offset compensation value used to suppress carrier leakage occurring on real and imaginary signal paths in an analog radio transmitter when a significant temperature change in the transmitter is detected. At least one DC offset signal having a level that corresponds to the at least one DC offset compensation value is provided to a digital DC offset compensation module which adjusts the DC level of at least one of the real and imaginary signal paths.
Abstract:
The invention provides embodiments to facilitate cell search. In one embodiment, received samples are split into a plurality of sample sets for processing. Each of the sets is processed and an accumulated result is divided by an estimated noise value. In another embodiment, a code correlator correlates the received signal with a primary synchronization code and an auxiliary code correlator having a same length as the code correlator correlates the received signal with a code having a low cross correlation with the primary synchronization code. In another embodiment, a division of an accumulated result with a noise estimate is performed using indexes of the most significant bits.
Abstract:
A method and system for adjusting the amplitude and phase characteristics of wireless communication signals generated by an analog radio transmitter, based on transmit power control (TPC) signals received by a base station (BS) and known characteristics of a power amplifier (PA) included in the transmitter. A digital pre-distortion compensation module, having real and imaginary signal paths, receives and processes real and imaginary signal components used to generate the wireless communication signal. The phase and amplitude characteristics of the wireless communication signal are controlled in response to the TPC signals, such that impaired amplitude and phase characteristics of the PA are corrected.
Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component tolerances of an analog radio, a wireless communication transmitter employs a control process to implement numerous digital signal processing (DSP) techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. By monitoring a plurality of parameters associated with the analog radio, such as temperature, bias current or the like, enhanced phase and amplitude compensation, as well as many other radio frequency (RF) parameters may be implemented.
Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component tolerances of an analog radio, a future system architecture (FSA) wireless communication transceiver employs numerous digital signal processing (DSP) techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. Automatic gain control (AGC) functions are provided in the digital domain, so as to provide enhanced phase and amplitude compensation, as well as many other radio frequency (RF) parameters.
Abstract:
The present invention is a user equipment (UE) comprising a system for establishing a communication link. The system includes a first, second and third module and a controller. The first module first processes a communication signal and generates an index value associated with a primary synchronization code within the communication signal. The second module second processes the communication signal in response to the index value and a peak sample extracted from the first module and retrieves a code group number, slot offset and secondary synchronization code. The third module third processes the communication signal and retrieves a primary scrambling code in response to the code group number and the slot offset. The controller, which is coupled to the first, second and third modules, controls the adjustment of a search frequency of the UE to retrieve the primary scrambling code in the communication signal.