Abstract:
Embodiments of an access point (AP), station (STA) and method for subcarrier scaling are generally described herein. The AP may transmit a high efficiency (HE) physical layer convergence procedure (PLCP) protocol data unit (PPDU) that includes a legacy long training field (L-LTF), a legacy signal (L-SIG) field, and an HE signal (HE-SIG) field. The HE-SIG may be based on HE-SIG symbols mapped to a group of HE subcarriers that includes legacy subcarriers and HE extension subcarriers. The L-LTF may be based on L-LTF pilot symbols mapped to the legacy subcarriers. The L-SIG may be based on L-SIG legacy symbols mapped to the legacy subcarriers and L-SIG extension pilot symbols mapped to the HE extension subcarriers. The AP may scale a per-subcarrier power of the L-SIG extension pilot symbols to match a per-subcarrier power of the L-LTF pilot symbols.
Abstract:
A wireless device configured to process Multiple-Input Multiple-Output (MIMO) data streams. The wireless device includes a Singular Value Decompostion (SVD) engine configured to diagonalize a channel matrix into a precoding matrix; an SVD rotation engine configured to phase-rotate the precoding matrix, such that the channel matrix is partially de-diagnalized; and a transmitter configured to transmit a data packet corresponding to the phase-rotated precoding matrix.
Abstract:
Methods, apparatuses, computer readable media for uplink transmission power control in a wireless network. An apparatus of a wireless device comprising processing circuitry is disclosed. The processing circuitry is configured to decode a trigger frame from an access point for an uplink communication, the trigger frame comprising an uplink resource allocation for the station, the uplink resource allocation including common information and per station information, the common information including an indication of a maximum receive power at the access point, the per station information comprising an identification of the station, and an indication of a resource unit (RU). The processing circuitry may be further configured to: encode an uplink (UL) physical layer convergence procedure (PLCP) protocol data unit (PPDU)(UL-PPDU) in accordance with the indication of the RU. The processing circuitry may be further configured to: determine a transmit power for the UL-PPDU based on the maximum receive power.
Abstract:
This disclosure describes methods, apparatus, and systems related to early indication system. A device may identify a high efficiency frame in accordance with a high efficiency communication standard, received from a first device, the high efficiency frame including, at least in part, one or more legacy signal fields and one or more high efficiency signal fields. The device may determine a length field included in one of the one or more legacy signal fields, wherein the length field includes an indication bit. The device may determine a position of a high efficiency short training field within the high efficiency frame based at least in part on the indication bit.
Abstract:
A spur cancelation system includes error circuitry, inverse spur circuitry, and injection circuitry. The error circuitry is configured to generate an error signal based at least on a first transceiver signal in a transceiver signal processing chain. The inverse spur circuitry is configured to, based at least on the error signal, determine a gain and a phase of a spur signal in the transceiver signal and generate an inverse spur signal based at least on the gain and the phase of the spur signal. The injection circuitry is configured to inject the inverse spur signal to cancel a spur in a second transceiver signal in the transceiver signal processing chain.
Abstract:
Systems, apparatus, and methods for determining device-specific signal extension durations are disclosed. An example method includes determining a short interframe space (SIFS) time associated with the at least one processor; determining that a first processing time of the at least one processor exceeds a first predefined threshold, wherein the first processing time correspond to a time spent processing a symbol in a protocol data unit (PDU) exceeding a predetermined coded bit size threshold; determining that a second processing time of the at least one processor exceeds a second predetermined threshold, based at least in part on the first processing time; and determining that the second processing time exceeds the SIFS time.