Abstract:
A method for operating a device includes determining adaptation criteria for a waveform to be transmitted by a transmitting device over a communications channel towards a receiving device, and adjusting a generalized multi-carrier multiplexing parameter (GMMP) of the waveform in accordance with the adaptation criteria. The method also includes transmitting an indicator of the adjusted GMMP to at least one of the transmitting device and the receiving device.
Abstract:
An apparatus for adapting hyper cells in response to changing conditions of a cellular network is disclosed. During operation, the apparatus collects data regarding network conditions of the cellular network. In accordance with the collected network condition data, the apparatus changes an association of a transmit point from a second cell ID of a second hyper cell to a first cell ID of a first hyper cell. Virtual data channels, broadcast common control channel and virtual dedicated control channel, transmit point optimization, UE-centric channel sounding and measurement, and single frequency network synchronization are also disclosed.
Abstract:
A method for operating a device includes determining adaptation criteria for a waveform to be transmitted by a transmitting device over a communications channel towards a receiving device, and adjusting a generalized multi-carrier multiplexing parameter (GMMP) of the waveform in accordance with the adaptation criteria. The method also includes transmitting an indicator of the adjusted GMMP to at least one of the transmitting device and the receiving device.
Abstract:
A method and system for offset lifting is provided. In an embodiment, a method for encoding data includes receiving a K-bit source word input. The method also includes encoding the K-bit source word input according to a LDPC code, a lifting function, and a circulant size offset to generate an N-bit code word output. The circulant size and lifting function are determined according to an information length, a code rate, and a decoder. The method also includes storing the N-bit code word output in input/output memory.
Abstract:
A method and system of allocating resources in a Radio Access Network that includes associating each of a plurality of services with a slice that is allocated a unique set of network resources and transmitting information in the Radio Access Network for at least one of the services using the slice associated with the at least one service.
Abstract:
Embodiments of this disclosure enhance the error detection performance of parallel polar encoding by cross-concatenating parity bits between segments of information bits transmitted over different sets of sub-channels. In one embodiment, a first segment of information bits is transmitted over a first set of sub-channels, and at least a second segment of information bits, and a masked parity bit, are transmitted over a second set of sub-channels. A value of the masked parity bit is equal to a bitwise combination of a first parity bit computed from the first segment of information bits and a second parity bit computed from the second segment of information bits. The bitwise combination may be a bitwise AND, a bitwise OR, or a bitwise XOR of the respective parity bits.
Abstract:
Embodiments are provided for an asynchronous processor with token-based very long instruction word architecture. The asynchronous processor comprises a memory configured to cache a plurality of instructions, a feedback engine configured to receive the instructions in bundles of instructions at a time (referred to as very long instruction word) and to decode the instructions, and a crossbar bus configured to transfer calculation information and results of the asynchronous processor. The apparatus further comprises a plurality of sets of execution units (XUs) between the feedback engine and the crossbar bus. Each set of the sets of XUs comprises a plurality of XUs arranged in series and configured to process a bundle of instructions received at the each set from the feedback engine.
Abstract:
A transmitting circuit, a transceiver, a communication system, and a method for transmitting data. The transmitting circuit includes a digital interface circuit configured to obtain, in a predetermined bandwidth, data to be sent, and decompose the data into N parallel sub digital signal flows; a digital modulation circuit configured to modulate the N sub digital signal flows to obtain N modulated signals; a frequency relocation circuit configured to perform frequency relocation on the N modulated signals; a synthesizer configured to modulate M modulated signals of the N modulated signals that have undergone frequency relocation into a bandwidth signal; a digital to analog converter configured to receive the bandwidth signal, and perform digital to analog conversion on the bandwidth signal to obtain an analog signal; an up-conversion circuit configured to receive the analog signal, and convert the analog signal into a radio frequency signal.
Abstract:
Embodiments are provided for an asynchronous processor with a Hierarchical Token System. The asynchronous processor includes a set of primary processing units configured to gate and pass a set of tokens in a predefined order of a primary token system. The asynchronous processor further includes a set of secondary units configured to gate and pass a second set of tokens in a second predefined order of a secondary token system. The set of tokens of the primary token system includes a token consumed in the set of primary processing units and designated for triggering the secondary token system in the set of secondary units.
Abstract:
An embodiment method of resource allocation for sparse code multiple access (SCMA) transmissions includes partitioning a resource block into a plurality of resource regions. The method also includes assigning the plurality of resource regions to respective device groups. The resource region assignments are then signaled to devices of the respective device groups. The method also includes receiving SCMA signals from the devices of the respective device groups. The SCMA signals from one group of the respective device groups are asynchronous with respect to the SCMA signals from another group of the respective device groups.