摘要:
The present invention comprises a globe shield and an inner disposed inside the shield, between which a low-pressured plasmic arc discharging zone is enclosed. Further, a glass division device near the inner in the discharging zone is coated with fluorescent powder on the surface thereof and is formed by glass or sheet glass having at least one opening defined on the glass to ensure the passage of air. The present invention advantages preferable ruminant efficiency as 15 to 20% higher as that of the conventional products, increasing the thermal resistance between the high-temperature circular discharging zone of the plasmic arc and the power coupler to decrease the heat generated by the corresponding radiation conduction for the inner, so that a large power is enabled by the present invention, accomplishing a performance of 200-300 W of the lighting power, and attaining a 75-85 Lm/W of the ruminant efficiency.
摘要:
Embodiments of methods, systems, or apparatuses relating to adjusting a brightness level of at least a portion of a backlight of a display device based, at least in part, on one or more measurements of ambient light values.
摘要:
A method of forming the structure of the semiconductor device having a waveguide. Firstly, a SOI substrate including a bulk silicon, an insulating layer, and a silicon layer is provided and a device region and a waveguide region are defined on the SOI substrate. Afterwards, a protection layer and a patterned shielding layer are formed to cover the waveguide region and expose the device region. Subsequently, a recess is formed by etching the protection layer, the silicon layer and the insulating layer and thereby the bulk silicon is exposed. After that, an epitaxial silicon layer is formed in the recess and a semiconductor device is subsequently formed on the epitaxial silicon layer. Also, the present invention conquers the poor electrical performance of the semiconductor device integrated into the SOI substrate.
摘要:
A micro electro mechanical system (MEMS) structure is disclosed. The MEMS structure includes a backplate electrode and a 3D diaphragm electrode. The 3D diaphragm electrode has a composite structure so that a dielectric is disposed between two metal layers. The 3D diaphragm electrode is adjacent to the backplate electrode to form a variable capacitor together.
摘要:
An integrated circuit (IC) having a microelectromechanical system (MEMS) device buried therein is provided. The integrated circuit includes a substrate, a metal-oxide semiconductor (MOS) device, a metal interconnect, and the MEMS device. The substrate has a logic circuit region and a MEMS region. The MOS device is located on the logic circuit region of the substrate. The metal interconnect, formed by a plurality of levels of wires and a plurality of vias, is located above the substrate to connect the MOS device. The MEMS device is located on the MEMS region, and includes a sandwich membrane located between any two neighboring levels of wires in the metal interconnect and connected to the metal interconnect.
摘要:
A method for fabricating a MEMS is described as follows. A substrate is provided, including a circuit region and an MEMS region separated from each other. A first metal interconnection structure is formed on the substrate in the circuit region, and simultaneously a first dielectric structure is formed on the substrate in the MEMS region. A second metal interconnection structure is formed on the first metal interconnection structure, and simultaneously a second dielectric structure, at least two metal layers and at least one protection ring are formed on the first dielectric structure. The metal layers and the protection ring are formed in the second dielectric structure and the protection ring connects two adjacent metal layers to define an enclosed space between two adjacent metal layers. The first dielectric structure and the second dielectric structure outside the enclosed space are removed to form an MEMS device in the MEMS region.
摘要:
A microelectromechanical system (MEMS) structure and a fabricating method thereof are described. The MEMS structure includes a fixed part and a movable part. The fixed part is disposed on and connects with a substrate. The movable part including at least two first metal layers, a first protection ring and a first dielectric layer is suspended on the substrate. The first protection ring connects two adjacent first metal layers, so as to define a first enclosed space between the two adjacent first metal layers. The first dielectric layer is disposed in the enclosed space and connects the two adjacent first metal layers.
摘要:
A disk drive is disclosed comprising a disk surface having a plurality of servo sectors for defining a plurality of servo tracks, and a head actuated radially over the disk surface. A first servo sector defines a first servo track comprising a first track address having a first width, and a second servo sector defines a second servo track comprising a second track address having a second width substantially less than the first width. In one embodiment the servo sectors are written using an external servo writer or media writer, and in another embodiment the servo sectors are self-servo written by the disk drive.
摘要:
A microelectromechanical system (MEMS) structure and a fabricating method thereof are described. The MEMS structure includes a fixed part and a movable part. The fixed part is disposed on and connects with a substrate. The movable part including at least two first metal layers, a first protection ring and a first dielectric layer is suspended on the substrate. The first protection ring connects two adjacent first metal layers, so as to define a first enclosed space between the two adjacent first metal layers. The first dielectric layer is disposed in the enclosed space and connects the two adjacent first metal layers.