Abstract:
An apparatus includes at least one processing device configured to determine an optimal pulse width for obtaining level measurements associated with material in a tank. The at least one processing device is also configured to generate a control signal that causes a transmitter of a guided wave radar (GWR) to transmit a signal having the optimal pulse width. The at least one processing device is further configured to send the control signal to the transmitter. The at least one processing device can also be configured to alter a length of the optimal pulse width in order to reduce false echoes detected by the GWR, reduce a size of an upper dead zone of the GWR, and/or detect a change of impedance to identify a fault of a process connector in the GWR.
Abstract:
An apparatus includes at least one processing device configured to determine an optimal pulse width for obtaining level measurements associated with material in a tank. The at least one processing device is also configured to generate a control signal that causes a transmitter of a guided wave radar (GWR) to transmit a signal having the optimal pulse width. The at least one processing device is further configured to send the control signal to the transmitter. The at least one processing device can also be configured to alter a length of the optimal pulse width in order to reduce false echoes detected by the GWR, reduce a size of an upper dead zone of the GWR, and/or detect a change of impedance to identify a fault of a process connector in the GWR.
Abstract:
Method and apparatus for monitoring amounts of submerged solid consumable. A GWR (Guided Wave Radar) component can provide a measurement of a reflection at a fixed position in a particle bed. The reflection represents aggregate dielectric properties in a vessel. The measurement includes hydrocarbon and solid consumable properties of a mixture in the vessel, wherein a measurement value is indicative of a greater amount of the solid consumable in the mixture in the vessel. If data is measured by the GWR component indicating that the measurement value is approaching the measurement value of the hydrocarbon, this data is indicative that the material (e.g., solid consumable such as salt) in the vessel should be replenished.
Abstract:
A method of level finding includes providing characteristics of a shape of a transmitted pulse in time domain launched onto a waveguide into a tank having at least one material therein, physical properties of the waveguide and real and imaginary dielectric characteristics of the material at a frequency of the pulse. A level finding algorithm having a coarse search and a fine search is implemented, where the coarse search minimizes a prediction error between an echo signal (echo curve y(k)) and a sampled pulse model echo p(k) to obtain an objective function J(k) in a vicinity of a minimum prediction error (k*). The fine search calculates at least one minimum or maximum using J(k) in the vicinity of k*. The minimum or the maximum corresponds to a level of the material or an interface involving the material.
Abstract:
Method and apparatus for monitoring amounts of submerged solid consumable. A GWR (Guided Wave Radar) component can provide a measurement of a reflection at a fixed position in a particle bed. The reflection represents aggregate dielectric properties in a vessel. The measurement includes hydrocarbon and solid consumable properties of a mixture in the vessel, wherein a measurement value is indicative of a greater amount of the solid consumable in the mixture in the vessel. If data is measured by the GWR component indicating that the measurement value is approaching the measurement value of the hydrocarbon, this data is indicative that the material (e.g., solid consumable such as salt) in the vessel should be replenished.
Abstract:
A guided wave radar fluid level measurement system can measure the level of product in a tank. A pulse of RF energy sent along a waveguide in the tank can be reflected where the waveguide enters the product. A time of flight measurement can indicate the product level. The product inside the tank can flow and that flow can push the waveguide and thereby torque and possibly bend the waveguide. A streamlined wave guide is torqued less when the streamlining is aligned with the direction of flow. A rotating connector can provide for the waveguide to rotate and a weathervane effect can align the streamlined waveguide with the flow.
Abstract:
A coupling device for impedance matching a probe of a guided wave radar (GWR) system. A feed-through is for connecting to a coaxial cable or other transmission line connector that includes an inner conductor which connects to an output of a transceiver and an outer conductor that connects to an outer metal sleeve. A subwavelength coaxial transmission line (CTL) having a length from λ/5 to λ/2 is coupled to the feed-through including an inner conductor connected to the inner conductor of the feed-through and an outer conductor connected to the outer metal sleeve. A mode converter (MC) having a plurality of metal fingers (7) of length 2λ± twenty percent is connected to the outer conductor of the subwavelength CTL, where the MC includes a dielectric coating on its inner conductor connected to the inner conductor of the subwavelength CTL.
Abstract:
A measurement apparatus includes a beta gauge for generating a first sensor response signal from a composite sheet including a sheet material having a coating thereon including a high-z material or the sheet material has particles including the high-z material embedded in the sheet material. A second sensor being an x-ray or an infrared (IR) sensor provides a second sensor response signal from the composite sheet. A computing device is coupled to receive the first and the second sensor response signal that includes a processor having an associated memory for implementing an algorithm that uses the first and the second sensor response signal to simultaneously compute two or more weight measures selected from (i) a weight per unit area of the high-z material, (ii) a weight per unit area of the sheet material, and (iii) a total weight per unit area of the composite sheet.
Abstract:
A sensor system includes an eddy current sensor including at least one coil with excitation electronics coupled across the coil. An optical displacement sensor is secured to the eddy current sensor so that a vertical distance between the sensors is fixed. The optical displacement sensor is located on top of and concentric with the coil so that a measurement axis of the optical displacement sensor is collinear with an axis of symmetry of the coil. A computing device including a processor and memory is coupled to receive sensor data from the eddy current sensor and the optical displacement sensor that is adapted for analyzing the sensor data obtained from measuring a coated substrate including a coating layer on at least one side of a metal substrate to determine at least a thickness of the coating layer.
Abstract:
A method and system for seal failure annunciation comprises a process connector connected to a probe used to measure a product level in a tank. A pulse generation module generates a pulse that is propagated through a voided space in the process connector and a detector module configured to receive the echo curve from the interrogation pulse. A logic module is used to evaluate the received echo curve to determine if a seal in the process connector has failed. When the logic module indicates seal failure, an alarm module initiates an alarm indicating said seal in said process connector has failed.