Abstract:
The present disclosure describes optoelectronic modules that, in some implementations, address the need to combine precise measurements of scenes over a range of near and far distances. For example, an optoelectronic module can include a light emitter operable to direct modulated structured light onto a scene. The module includes an imager to receive reflected light signals from the scene. The imager includes demodulation pixels operable to provide amplitude and phase information based on the reflected light signals. Various techniques can be used to derive distance or three-dimensional information about the scene based on the signals from the pixels.
Abstract:
The present disclosure describes structured-stereo imaging assemblies including separate imagers for different wavelengths. The imaging assembly can include, for example, multiple imager sub-arrays, each of which includes a first imager to sense light of a first wavelength or range of wavelengths and a second imager to sense light of a different second wavelength or range of wavelengths. Images acquired from the imagers can be processed to obtain depth information and/or improved accuracy. Various techniques are described that can facilitate determining whether any of the imagers or sub-arrays are misaligned.
Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.