Abstract:
An embedded imaging system in one embodiment includes an encoding module, an imaging module, and a cable. The encoding module is disposed proximate to a proximal end of the system, and is configured to encode frame synchronizing information into timing information comprising a reference clock. The imaging module is disposed proximate the distal end, and includes an image capture device configured to obtain imaging information and a decoding module. The decoding control module is configured to obtain the timing information, to decode the timing information to obtain recovered frame synchronizing information, and to control the image capture device using the recovered frame synchronizing information. The cable is interposed between the proximal end and the distal end, and is configured for passage therethrough of the timing information and the imaging information.
Abstract:
A gas analysis system includes a scanning platform configured to direct a plurality of light beams over a target area. The scanning platform includes emitter spectroscopy assembly configured to emit the plurality of light beams toward respective target surfaces of the target area, receive a plurality of reflected light beams from the respective target surfaces, and determine a spectral intensity of each reflected light beam of the plurality of reflected light beams. Moreover, the scanning platform includes a main controller receive the feedback from the spectroscopy assembly indicative of the spectral intensity of each reflected light beam of the plurality of reflected light beams and determine a volumetric characterization of a gas plume based at least in part on the spectral intensity of a reflected light beam of the plurality of reflected light beams.
Abstract:
A gas analysis system includes a spectroscopy assembly coupled to a vehicle. The spectroscopy assembly includes a multiplexer configured to combine a plurality of light beams into a multiplexed light beam, wherein the multiplexer is configured to direct the multiplexed light beam toward a target surface. Additionally, the spectroscopy assembly includes a collection optic configured to receive a reflected multiplexed light beam from the target surface. Further, the spectroscopy assembly includes a controller configured to de-multiplex the multiplexed light beam into a plurality of reflected light beams and determine a spectral intensity of the plurality of reflected light beams.
Abstract:
An accelerometer includes a controller, a light source operatively coupled to the controller, and a bifurcated waveguide coupled to the light source and configured to receive light output by the light source. The bifurcated waveguide includes a first waveguide portion and a second waveguide portion. The accelerometer also includes a first resonator operatively coupled to the controller and configured to receive light from the first waveguide portion, and a second resonator operatively coupled to the controller and configured to receive light from the second waveguide portion. The first resonator includes a first proof mass, and the second resonator includes a second proof mass.
Abstract:
A sensor interrogation unit in one embodiment includes a control module, a reading module, and a determination module. The control module is configured to control one or more lasers to provide a pulsed signal to at least one sensor. Each period of the pulsed signal has a first component having a first intensity and a second component having a second intensity that is lower than the first intensity. The reading module is configured to receive at least one return signal comprising reflections of the pulsed signal from the at least one sensor, to read one of the first component or the second component, and to provide frequency information based on the read reflections. The determination module is configured to determine at least one resonant frequency of the at least one sensor based on the frequency information.
Abstract:
An optical subassembly and method of manufacturing an optical subassembly are provided. One subassembly includes a base, an optical emitter attached to the base and one or more spacers attached to the base surrounding at least a portion of the optical emitter. The optical subassembly further includes a ferrule sleeve attached to the base with the optical emitter and one or more spacers within the ferrule sleeve, wherein the ferrule sleeve is configured to receive an optical fiber therein. The optical subassembly also includes one or more reinforcement members attached to the base adjacent the ferrule sleeve and configured to provide support to the ferrule sleeve.
Abstract:
A gas analysis system includes a scanning platform configured to direct a plurality of light beams over a target area. The scanning platform includes emitter spectroscopy assembly configured to emit the plurality of light beams toward respective target surfaces of the target area, receive a plurality of reflected light beams from the respective target surfaces, and determine a spectral intensity of each reflected light beam of the plurality of reflected light beams. Moreover, the scanning platform includes a main controller receive the feedback from the spectroscopy assembly indicative of the spectral intensity of each reflected light beam of the plurality of reflected light beams and determine a volumetric characterization of a gas plume based at least in part on the spectral intensity of a reflected light beam of the plurality of reflected light beams.