Abstract:
Probes for an inspection system for a substantially round hole in a material are provided. One version of the probe may include a flexible sheet shaped and biased to substantially conform with a portion of an interior of the substantially round hole; and a plurality of sensors disposed on the flexible sheet, each sensor configured to transmit a non-destructive signal into the material for inspecting the substantially round hole.
Abstract:
A turbine casing is provided and includes first and second turbine casing shells configured to be removably coupled to one another. At least one of the first and second turbine casing shells is formed to define an access slot. At least one service wedge is configured to be removably installed in the access slot.
Abstract:
A computer-implemented system for enhanced tip-tracking and navigation of visual inspection devices includes a visual inspection device. The system further includes a plurality of spatially sensitive fibers. The system includes a computing device. The computing device includes a memory device and a processor. The system includes a storage device. The storage device includes an engineering model representing the physical asset. The computing device is configured receive an insertion location from the visual inspection device. The computing device is configured to receive fiber information associated with the visual inspection device. The computing device is configured to determine the real-time location of the visual inspection device using the fiber information. The computing device is configured to identify the real-time location of the visual inspection device with respect to the engineering model. The computing device is configured to navigate the visual inspection device from a first location to a second location.
Abstract:
A visual inspection device for inspecting interior passages of a system is disclosed herein. In an embodiment, the visual inspection device includes a visual inspection tool and a tube having a lumen disposed therein, the visual inspection tool being disposed at a distal end of the tube. A plurality of actuators are disposed along an axial extent of an exterior of the tube, and a locomotor is disposed on an exterior of the tube. A locator for tracking a location of the visual inspection tool is also provided as part of the visual inspection device.
Abstract:
Systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine are described. A robotic crawler has multidirectional traction modules, an expandable body, and sensor modules. A control system communicates with the robotic crawler to provide a control signal to navigate an inspection path within an annular gap of the machine. The inspection path includes axial and radial movements to inspect the annular gap using the sensor modules.
Abstract:
This disclosure provides systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine. A robotic crawler includes an expandable body, multidirectional traction modules, and sensor modules. The expandable body is movable between a collapsed state and an expanded state. The multidirectional traction modules are removably connected to and positioned by the expandable body and configured to engage opposed surfaces within an annular gap of the machine. The sensor modules are removably connected to and supported by the expandable body and include a plurality of sensor types to inspect the annular gap of the machine.
Abstract:
This disclosure provides systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine. A robotic crawler has multidirectional traction modules, an expandable body, and sensor modules. A control system communicates with the robotic crawler to provide a control signal to navigate an inspection path within an annular gap of the machine. The inspection path includes axial and radial movements to inspect the annular gap using the sensor modules.
Abstract:
Various aspects include methods of inspecting a substantially round hole in a material. One method can include: feeding a probe axially into the substantially round hole until the probe completely passes through the substantially round hole while the probe is activated; rotating the probe at least ninety degrees around a primary axis of the substantially round hole after feeding the probe completely through the substantially round hole; removing the probe axially from the substantially round hole after rotating the probe at least ninety degrees while the probe is activated; and compiling at least one of eddy current data or ultrasound data about the hole from the feeding of the probe axially into the substantially round hole and the removing of the probe axially from the substantially round hole.
Abstract:
A system for monitoring a component is provided. The system may include a strain sensor configured on the component, an electrical field scanner for analyzing the strain sensor, and a processor in operable communication with the electrical field scanner. The processor may be operable for measuring an electrical field value across the strain sensor along a mutually-orthogonal X-axis and Y-axis to obtain a data point set. The processor may further be operable for assembling a field profile of the strain sensor based on the data point set. Methods of using the system are also provided.
Abstract:
Components can comprise a substrate, an embedded strain sensor comprising at least two reference points disposed on the substrate, and an outer coating disposed over at least a portion of the embedded strain sensor.