Abstract:
An uninterruptible power supply (UPS) system is provided. The UPS system includes a plurality of UPSs, a ring bus coupled to the UPSs, a plurality of chokes, and at least one static switch coupled between an associated UPS of the UPSs and the ring bus. Each choke electrically couples an associated UPS to the ring bus. The static switch is switchable to selectively bypass at least one choke.
Abstract:
A system is provided. The system includes a plurality of uninterruptible power supplies (UPSs), a ring bus, and at least one controller communicatively coupled to the plurality of UPSs, the at least one controller configured to calculate an output voltage frequency for each UPS of the plurality of UPSs, wherein the output voltage frequency for a UPS of the plurality of UPSs is calculated based at least on a derivative of an average active output power of the UPS, and control operation of each UPS based on the respective calculated output voltage frequencies.
Abstract:
A system is provided. The system includes a plurality of uninterruptible power supplies (UPSs), a ring bus, a plurality of chokes, each choke of the plurality of chokes electrically coupling an associated UPS of the plurality of UPSs to the ring bus, and at least one switch electrically coupled between at least one UPS of the plurality of UPSs and the ring bus, the at least one switch having an opening time of less than 10 milliseconds.
Abstract:
A system is provided. The system includes a plurality of uninterruptible power supplies (UPSs), a ring bus, at least one load electrically coupled to the plurality of UPSs and the ring bus, and a controller communicatively coupled to the plurality of UPSs. The controller is configured to calculate an output voltage frequency for each UPS of the plurality of UPSs, and control operation of each UPS based on the respective calculated output voltage frequencies.
Abstract:
A system is provided. The system includes a utility, a plurality of uninterruptible power supplies (UPSs), a ring bus, at least one load electrically coupled to the plurality of UPSs and the ring bus, and a controller communicatively coupled to the plurality of UPSs, the controller configured to determine a common reference angle while the utility is disconnected from at least one UPS of the plurality of UPSs, calculate a phase angle for each UPS of the plurality of UPSs, wherein the phase angle for each UPS is calculated relative to the common reference angle, and control operation of each UPS based on the respective calculated phase angles.
Abstract:
A system including a multi-level power converter is provided. The system also includes a plurality of DC link capacitors and a balancing circuit coupled to the multi-level power converter. The balancing circuit further includes two sets of interface branches. Each set includes a plurality of interface branches and a plurality of switching elements. The balancing circuit also includes a battery coupled to one or more inductors across the two sets of interface branches and a controller for controlling switching operations of the plurality of switching elements for modifying a voltage of the battery to balance voltages of the plurality of DC link capacitors.
Abstract:
A DC charging circuit for an electric vehicle includes a neutral-point clamped (NPC) rectifier and a DC/DC buck converter. The NPC rectifier is configured to convert three-phase AC power to a first DC voltage at a rectifier output stage. The DC/DC buck converter includes a first DC stage coupled to the rectifier output stage, and a second DC stage configured to be coupled to the electric vehicle. The DC/DC buck converter is configured to convert the first DC voltage to a second DC voltage to be supplied to the electric vehicle.
Abstract:
An uninterruptable power supply (UPS) system for providing power to a load coupled to a utility power source is provided. The UPS system includes a doubly-fed induction generator (DFIG), a rechargeable energy storage system, a first inverter, and a controller in communication with the DFIG and the first inverter. The DFIG includes a stator and a rotor coupled to the load. The stator and rotor are magnetically coupled together. The DFIG generates an auxiliary power output. The first inverter is coupled between the rotor and the rechargeable energy storage system. The controller detects a power disturbance associated with the utility power source and controls the first inverter to provide an excitation input to the rotor in response to the power disturbance. The DFIG provides the auxiliary power output to the load based on the excitation input.
Abstract:
A system is provided. The system includes a plurality of uninterruptible power supplies (UPSs), a ring bus, a plurality of chokes, each choke of said plurality of chokes electrically coupled between a respective UPS of said plurality of UPSs and the ring bus, and a plurality of series compensators, each series compensator of the plurality of series compensators electrically coupled between an associated choke of the plurality of chokes and the ring bus.
Abstract:
A system is provided. The system includes a plurality of uninterruptible power supplies (UPSs), each UPS of the plurality of UPSs including an inverter, a ring bus, and at least one controller communicatively coupled to the plurality of UPSs, the at least one controller configured to determine when a bridge current in at least one UPS of the plurality of UPSs reaches a predetermined bridge current limit, and modify, in response to the determination, a capacitor voltage in the inverter of the at least one UPS to reduce a DC fault current component of a load current in the inverter.