Abstract:
An energy storage system is presented. The energy storage system includes a primary energy storage device operatively couplable to a main bus, where the main bus is operatively coupled to a power generation device. Further, the energy storage system includes an auxiliary bus operatively couplable to the main bus and a grid bus. Furthermore, the energy storage system includes a plurality of auxiliary loads operatively coupled to the auxiliary bus and a housing configured to encompass the primary energy storage device, the auxiliary bus, and the plurality of auxiliary loads, where the auxiliary bus is configured to supply power to the plurality of auxiliary loads from the primary energy storage device, the power generation device, a grid, or combinations thereof.
Abstract:
A distributed fault management system includes at least one sensor associated with a fuel cell system and at least one first fault management computing device coupled to the at least one sensor. The at least one first fault management computing device is configured to receive data associated with a first fault condition. The at least one first fault management computing device is further configured to generate a resolution to the first fault condition and transmit at least one resolution command signal to at least one second fault management computing device. The at least one resolution command signal configures the at least one second fault management computing device to use the resolution to resolve a second fault condition in a similar manner.
Abstract:
Certain embodiments of the disclosure may include systems and methods for variable speed operation of combustion engines. According to an example embodiment of the disclosure, a method is provided for controlling the operation of the combustion engine. The method can include providing power from a power source to a converter; providing frequency variable power to a generator from the converter; accelerating the generator and associated turbine to a predetermined speed by modulating the frequency variable power from the converter; after a predetermined turbine speed is achieved, disconnecting power supplied to the generator by the converter; and modulating subsequent operation of the generator using power from the converter.
Abstract:
A fuel cell based power generation system is presented. The fuel cell based power generation system includes a fuel cell assembly configured to generate a DC power, at least one assembly switching element configured to operatively couple the fuel cell assembly to a first DC bus, at least one converter coupled between the first DC bus and an electrical grid, a plurality of auxiliary loads operatively coupled to the first DC bus at a location between the at least one assembly switching element and the at least one converter, where at least one of the plurality of auxiliary loads is configured to receive power from the fuel cell assembly via the at least one assembly switching element, and a controller operatively coupled to the at least one converter, where the controller is configured to allow a voltage of the first DC bus to fluctuate within a range of voltage values.
Abstract:
A fuel cell system is disclosed, which includes a fuel cell stack coupled to a load for providing power, a gas delivery system coupled to the fuel cell stack for providing fuel and oxygen to the fuel cell stack and a control system. The control system includes a forward controller for generating a desired control instruction signal based on a command from the load, and a correction controller for generating a control correction signal to avoid violating operational constraints of the fuel cell stack based on at least one measured signal from the fuel cell system. The control system generates a control signal based on the desired control instruction signal and the control correction signal, and controls the gas delivery system based on the generated control signal to ensure the fuel cell stack is operated within safe operating limits. A method for controlling the fuel cell system is also disclosed.
Abstract:
Certain embodiments of the disclosure may include systems and methods for variable speed operation of combustion engines. According to an example embodiment of the disclosure, a method is provided for controlling the operation of the combustion engine. The method can include providing power from a power source to a converter; providing frequency variable power to a generator from the converter; accelerating the generator and associated turbine to a predetermined speed by modulating the frequency variable power from the converter; after a predetermined turbine speed is achieved, disconnecting power supplied to the generator by the converter; and modulating the subsequent operation of the generator using power from the converter.