Abstract:
Benzoxepin compounds of Formula I, and including stereoisomers, geometric isomers, tautomers, solvates, metabolites and pharmaceutically acceptable salts thereof, wherein: Z1 is CR1 or N; Z2 is CR2 or N; Z3 is CR3 or N; Z4 is CR4 or N; and where (i) X1 is N and X2 is S, (ii) X1 is S and X2 is N, (iii) X1 is CR7 and X2 is S, (iv) X1 is S and X2 is CR7; (v) X1 is NR8 and X2 is N, (vi) X1 is N and X2 is NR8, (vii) X1 is CR7 and X2 is O, (viii) X1 is O and X2 is CR7, (ix) X1 is CR7 and X2 is C(R7)2, (x) X1 is C(R7)2 and X2 is CR7; (xi) X1 is N and X2 is O, or (xii) X1 is O and X2 is N, are useful for inhibiting lipid kinases including p110 alpha and other isoforms of PI3K, and for treating disorders such as cancer mediated by lipid kinases. Methods of using compounds of Formula I for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed.
Abstract:
Tricyclic PI3k inhibitor compounds of Formula I with anti-cancer activity, anti-inflammatory activity, or immunoregulatory properties, and more specifically with PI3 kinase modulating or inhibitory activity are described. Methods are described for using the tricyclic PI3K inhibitor compounds of Formula I for in vitro, in situ, and in vivo diagnosis or treatment of mammalian cells, organisms, or associated pathological conditions. Formula I compounds include stereoisomers, geometric isomers, tautomers, and pharmaceutically acceptable salts thereof. The dashed lines indicate an optional double bond, and at least one dashed line is a double bond. The substituents are as described.
Abstract:
Compounds of formula I: or pharmaceutically acceptable salts thereof, wherein X, R1, R2, R3 and A are as defined herein. Also disclosed are methods of making the compounds and using the compounds for treatment of diseases associated with LRRK2 receptor, such as Parkinson's disease.
Abstract:
Benzoxepin compounds of Formula I, and including stereoisomers, geometric isomers, tautomers, solvates, metabolites and pharmaceutically acceptable salts thereof, wherein: Z1 is CR1 or N; Z2 is CR2 or N; Z3 is CR3 or N; Z4 is CR4 or N; and where (i) X1 is N and X2 is S, (ii) X1 is S and X2 is N, (iii) X1 is CR7 and X2 is S, (iv) X1 is S and X2 is CR7; (v) X1 is NR8 and X2 is N, (vi) X1 is N and X2 is NR8, (vii) X1 is CR7 and X2 is O, (viii) X1 is O and X2 is CR7, (ix) X1 is CR7 and X2 is C(R7)2, (x) X1 is C(R7)2 and X2 is CR7; (xi) X1 is N and X2 is O, or (xii) X1 is O and X2 is N, are useful for inhibiting lipid kinases including p110 alpha and other isoforms of PI3K, and for treating disorders such as cancer mediated by lipid kinases. Methods of using compounds of Formula I for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed.
Abstract:
Naphthyridine compounds of formula (I): variations thereof, and their use as inhibitors of HPK1 (hematopoietic kinase 1) are described. The compounds are useful in treating HPK1-dependent disorders and enhancing an immune response. Also described are methods of inhibiting HPK1, methods of treating HPK1-dependent disorders, methods for enhancing an immune response, and methods for preparing the naphthyridine compounds.
Abstract:
Azaindole compounds and their use as inhibitors of HPK1 are described. The compounds are useful in treating HPK1-dependent disorders and enhancing an immune response. Also described are methods of inhibiting HPK1, methods of treating HPK1-dependent disorders, methods for enhancing an immune response, and methods for preparing the azaindole compounds.
Abstract:
Spirocyclic 2,3-dihydro-7-azaindole compounds of formula (I): variations thereof, and their use as inhibitors of HPK1 (hematopoietic kinase 1) are described. The compounds are useful in treating HPK1-dependent disorders and enhancing an immune response. Also described are methods of inhibiting HPK1, methods of treating HPK1-dependent disorders, methods for enhancing an immune response, and methods for preparing the spirocyclic 2,3-dihydro-7-azaindole compounds.
Abstract:
3-Carbonylaminoisoquinoline compounds of formula (I): variations thereof, and their use as inhibitors of HPK1 (hematopoietic kinase 1) are described. The compounds are useful in treating HPK1-dependent disorders and enhancing an immune response. Also described are methods of inhibiting HPK1, methods of treating HPK1-dependent disorders, methods for enhancing an immune response, and methods for preparing the 3-carbonylaminoisoquinoline compounds.
Abstract:
Naphthyridine compounds and their use as inhibitors of HPK1 are described. The compounds are useful in treating HPK1-dependent disorders and enhancing an immune response. Also described are methods of inhibiting HPK1, methods of treating HPK1-dependent disorders, methods for enhancing an immune response, and methods for preparing the naphthyridine compounds.
Abstract:
Azaindole compounds and their use as inhibitors of HPK1 are described. The compounds are useful in treating HPK1-dependent disorders and enhancing an immune response. Also described are methods of inhibiting HPK1, methods of treating HPK1-dependent disorders, methods for enhancing an immune response, and methods for preparing the azaindole compounds.