Abstract:
A thermal, flow measuring device for determining and/or monitoring the mass flow (φM) and/or the flow velocity (vF) of a flowable medium through a pipeline, comprising at least three sensor elements and an electronics unit, as well as method for operating a thermal, flow measuring device. Each sensor element is at least partially and/or at times in thermal contact with the medium, and includes a heatable temperature sensor. The electronics unit is embodied to heat each of the three sensor elements with a heating power, to register their temperature, to heat at least two of the at least three sensor elements simultaneously, continuously to ascertain the mass flow (φM) and/or the flow velocity (vF) of the medium, and, simultaneously, from a pairwise comparison of the temperatures and/or heating powers, to provide information concerning the state of at least one of the at least three sensor elements, and in the case that a malfunction and/or a deposit occurs on at least one of the at least three sensor elements, to perform a correction of the measured value for the mass flow (φM) and/or the flow velocity (vF) and/or to generate and to output a report concerning the state of the at least one sensor element.
Abstract:
A measuring device which has at least a first component, in which an integral measurement duct is provided or the first component forms in connection with additional components a measurement duct integrally in the measuring device. The measurement duct is provided for conducting a measured medium through the measuring device, characterized in that the first component has a first sensor for determining a first thermophysical property selected from thermal conductivity, thermal diffusivity and/or specific heat capacity of the measured medium, and wherein the measuring device has a second sensor, which vibrates and is provided for determining viscosity and/or density of the measured medium. The measured medium is conducted through the measurement duct from the first sensor to the second sensor.
Abstract:
A thermal, flow measuring apparatus for determining and/or monitoring flow of a measured medium through a measuring tube, comprising at least two temperature sensors, wherein a first temperature sensor is heatable, and a second temperature sensor serves to provide the temperature of the measured medium. According to the invention, the thermal, flow measuring apparatus has at least one measuring transducer for ascertaining the following properties of the medium: thermal conductivity, heat capacity, density and dynamic viscosity or thermal conductivity, thermal diffusivity, density and dynamic viscosity.
Abstract:
A thermal, flow measuring device for determining and/or monitoring the flow of a measured medium through a measuring tube, including a first sleeve, especially a first metal sleeve, and at least a second sleeve, especially a second metal sleeve, a first temperature sensor element and at least a second temperature sensor element. At least the first temperature sensor element is heatable and arranged in the first sleeve and the second temperature sensor element is arranged in the second sleeve. The thermal, flow measuring device has a piezoelectric transducer unit, which causes at least one of the sleeves to vibrate, as well as a method for operating a thermal, flow measuring device.
Abstract:
Thermal flow measuring device (1), especially for determining and/or monitoring the mass flow (ΦM) and/or the flow velocity (vF) of a flowable medium (3) through a pipeline (2), comprising at least three sensor elements (4a,4b,4c) and an electronics unit (9), wherein each of the at least three sensor elements (4a,4b,4c) is at least partially and/or at times in thermal contact with the medium (3), and includes a heatable temperature sensor (5a,5b,5c), and wherein the electronics unit (9) is embodied to heat each of the three sensor elements (4a,4b,4c) with a heating power (P1,P2,P3), to register their temperatures (T1,T2,T3), to heat at least two of the at least three sensor elements (4a,4b,4c) simultaneously, to ascertain the mass flow (ΦM) and/or the flow velocity (vF) of the medium (3), from a pairwise comparison of the temperatures (T1,T2,T3) and/or heating powers (P1,P2,P3) of the at least three sensor elements (4a,4b,4c) and/or at least one variable derived from at least one of the temperatures (T1,T2,T3) and/or heating powers (P1,P2,P3), to provide information concerning a change of the thermal resistance of at least one of the at least three sensor elements (4a,4b,4c), from a response to an abrupt change ΔP of the heating power supplied to at least one of the at least three sensor elements, to provide information concerning a change of the inner thermal resistance of the at least one sensor element, and in the case that a change of the inner and/or outer thermal resistance occurs in the case of at least one of the at least three sensor elements (4a,4b,4c), to perform a correction of the measured value for the mass flow (ΦM) and/or the flow velocity (vF) and/or to generate and to output a report concerning the state of the at least one sensor element mass flow (ΦM) and/or the flow velocity (vF).
Abstract:
A method for the manufacture of a sensor for a thermal flow measuring device, wherein the sensor has at least one housing with a first open end and a second open end. The first open end is securable in a sensor holder; and at least one resistance thermometer is inserted into the housing through the second open end of the housing and the second open end of the housing is closed. Cables for electrical contacting of the resistance thermometer lead out of the housing through the first open end of the housing.
Abstract:
A thin-film sensor for a thermal flowmeter with at least a first substrate layer made of electrically non-conductive material, a second layer made of electrically conductive material and a cover layer to protect the resistance layer against abrasion, wherein the second layer is designed as two sensor elements, wherein at least a first of the two sensor elements is designed to introduce a heat quantity into a medium, and at least a second of the two sensor elements is designed to determine the ambient temperature, and the thin-film sensor has a gap that isolates the two sensor elements from one another.
Abstract:
A thermal, flow measuring device comprising a sensor with a metal sensor housing, which includes a cap with a lateral surface and an end face, wherein the sensor housing has at least first and second pin sleeves, which protrude starting from the end face, wherein the sensor housing has a first heater in a first of the two pin sleeves and a temperature sensor in a second of the two pin sleeves for ascertaining a temperature of the medium; wherein the end face of the cap is divided at least into a base area and at least a first planar area inclined relative to the base area by an angle, wherein a second heater is arranged on an inner surface of the cap in the region of this first area.
Abstract:
A measuring device which has at least a first component, in which an integral measurement duct is provided or the first component forms in connection with additional components a measurement duct integrally in the measuring device. The measurement duct is provided for conducting a measured medium through the measuring device, characterized in that the first component has a first sensor for determining a first thermophysical property selected from thermal conductivity, thermal diffusivity and/or specific heat capacity of the measured medium, and wherein the measuring device has a second sensor, which vibrates and is provided for determining viscosity and/or density of the measured medium. The measured medium is conducted through the measurement duct from the first sensor to the second sensor.
Abstract:
A thermal flow measuring device for determining and/or monitoring the mass flow and/or the flow velocity of a flowable medium through a pipeline, comprising at least three sensor elements and an electronics unit. Each sensor element is in thermal contact with the medium, and includes a heatable temperature sensor. The electronics unit is embodied to heat each of the three sensor elements with a heating power, to register their temperatures, to heat at least two of the at least three sensor elements simultaneously, to ascertain the mass flow and/or the flow velocity of the medium, from a pairwise comparison of the temperatures and/or heating powers and/or at least one variable derived from at least one of the temperatures and/or heating powers, to provide information concerning a change of the thermal resistance of at least one of the at least three sensor elements, from a response to an abrupt change of the heating power supplied to at least one of the at least three sensor elements, to provide information concerning a change of the inner thermal resistance of the at least one sensor element, and in the case that a change of the inner and/or outer thermal resistance occurs in the case of at least one of the at least three sensor elements, to perform a correction of the measured value for the mass flow and/or the flow velocity and/or to generate and to output a report concerning the state of the at least one sensor element mass flow and/or the flow velocity.