Abstract:
A sensor of a thermal flow measuring device, as well as the flow measuring device itself. The sensor comprises a sensor platform, which bears at least one measuring sensor element and a heated sensor element. Each of the at least two sensor elements is surrounded by a metal sleeve, which protrudes from the sensor platform. The sensor has a plate-shaped element, which defines a plane, whose axis extends parallel to the axis of at least one of the metal sleeves, wherein the plane is spaced from the sensor platform in the axial direction of the metal sleeve. The metal sleeve with the heated sensor element has a terminal end face and the plate-shaped element is provided along the end face of the metal sleeve with the heated sensor element for flow guidance.
Abstract:
A thermal, flow measuring device for determining and/or monitoring a mass flow of a measured medium through a measuring tube, comprising a sensor having a first heatable resistance thermometer and at least a second heatable resistance thermometer, wherein the sensor has a longitudinal axis and an end face, which is divided into at least two adjoining segments, wherein a surface normal vector of at least a first segment forms with the longitudinal axis of the sensor an angle of at least 5°; and use of a thermal, flow measuring device.
Abstract:
A method for determining mass flow of a gas by means of a mass flow meter, which has a first and a second temperature sensor, which can be flowed around by the gas. The first temperature sensor is heated with a heating power Q, wherein the mass flow of the medium is determined by means of a power coefficient PC=Q/ΔT as a function of a heating power Q and a temperature difference ΔTm=T1−T2 between the measured values of the temperature sensor. A corrected power coefficient PCcorr is determined, wherein at least one correction occurs by means of at least one recovery correction term Ki, wherein the recovery correction term Ki has the form Ki=Δx·u2/(2·cp), wherein u is the flow velocity and cp the heat capacity of the medium, Δx is an element of the set {Δ1; Δ2; Δ12}, Δ1:=e1−cr, Δ2:=e2−cr and Δ12:=e1−e2=Δ1−Δ2, e1 and e2 are the recovery factors of the first, respectively second, temperature sensors, and wherein cr is a constant reference value, for which holds cr≦1, especially cr=1.
Abstract:
A thermal, flow measuring device for determining and/or monitoring a mass flow of a measured medium through a measuring tube, comprising a sensor having a first heatable resistance thermometer and at least a second heatable resistance thermometer, wherein the sensor has a longitudinal axis and an end face, which is divided into at least two adjoining segments, wherein a surface normal vector of at least a first segment forms with the longitudinal axis of the sensor an angle of at least 5°; and use of a thermal, flow measuring device.
Abstract:
A method for determining mass flow of a gas by means of a mass flow meter, which has a first and a second temperature sensor, which can be flowed around by the gas. The first temperature sensor is heated with a heating power Q, wherein the mass flow of the medium is determined by means of a power coefficient PC=Q/ΔT as a function of a heating power Q and a temperature difference ΔTm=T1−T2 between the measured values of the temperature sensor. A corrected power coefficient PCcorr is determined, wherein at least one correction occurs by means of at least one recovery correction term Ki, wherein the recovery correction term Ki has the form Ki=Δx·u2/(2·cp), wherein u is the flow velocity and cp the heat capacity of the medium, Δx is an element of the set {Δ1; Δ2; Δ12}, Δ1:=e1−cr, Δ2:=e2−cr and Δ12:=e1−e2=Δ1−Δ2, e1 and e2 are the recovery factors of the first, respectively second, temperature sensors, and wherein cr is a constant reference value, for which holds cr≦1, especially cr=1.
Abstract:
A thermal, flow measuring device comprising a sensor with a metal sensor housing, which has a hollow body for connecting to a plug-in apparatus and/or a tube or pipe wall, wherein the hollow body has a base area; wherein the sensor housing has at least first and second pin sleeves, which protrude starting from the base area, wherein the metal sensor housing is embodied as one piece and the pin sleeves and the hollow body are connected together seam freely, especially weld seam freely.
Abstract:
A thermal, flow measuring device comprising a sensor with a metal sensor housing, which has a hollow body for connecting to a plug-in apparatus and/or a tube or pipe wall, wherein the hollow body has a base area; wherein the sensor housing has at least first and second pin sleeves, which protrude starting from the base area, wherein the metal sensor housing is embodied as one piece and the pin sleeves and the hollow body are connected together seam freely, especially weld seam freely.
Abstract:
A thermal, flow measuring device comprising a sensor with a metal sensor housing, which includes a cap with a lateral surface and an end face, wherein the sensor housing has at least first and second pin sleeves, which protrude starting from the end face, wherein the sensor housing has a first heater in a first of the two pin sleeves and a temperature sensor in a second of the two pin sleeves for ascertaining a temperature of the medium; wherein the end face of the cap is divided at least into a base area and at least a first planar area inclined relative to the base area by an angle, wherein a second heater is arranged on an inner surface of the cap in the region of this first area.
Abstract:
A thin-film sensor for a thermal flowmeter with at least a first substrate layer made of electrically non-conductive material, a second layer made of electrically conductive material and a cover layer to protect the resistance layer against abrasion, wherein the second layer is designed as two sensor elements, wherein at least a first of the two sensor elements is designed to introduce a heat quantity into a medium, and at least a second of the two sensor elements is designed to determine the ambient temperature, and the thin-film sensor has a gap that isolates the two sensor elements from one another.
Abstract:
The application discloses a thermal, flow measuring device comprising: a sensor including a metal sensor housing having a hollow body and a base; and at least first and second pin sleeves protruding from the base. In a first of the two pin sleeves a first heater is provided and in a second of the two pin sleeves a temperature sensor is provided for ascertaining a temperature of a medium. At least two elongated elements extend with at least the same length as the pin sleeves starting from the hollow body in parallel with the two pin sleeves. On a cutting plane perpendicular to the sensor axis another axis extends that is perpendicular to the connecting axis and wherein the separation of the elongated elements in their course parallel with the axis lessens in certain regions.