Abstract:
Disclosed herein are a cooperation MIMO transmitting/receiving method and a terminal for supporting the same. A master terminal forms a slave terminal and a cluster performing cooperation communication. The master terminal transmits some data of data to be transmitted to a slave terminal and shares the some data with the slave terminal, and the slave terminal transparently transmits data transmitted from the master terminal to a target node.
Abstract:
Disclosed are a method and a terminal for a distributed access. The terminal maps data channels to be allocated in a plurality of data channels included in a frame and map scheduling priorities. In this case, the terminal determines positions of resources of a first message as a resource request message and a second message as a response message for the first message in the first channel.
Abstract:
Disclosed herein is a method for resource access, including: selecting at least one data sub-frame among a plurality of sub-frames included in a frame; transmitting the data from the data sub-frame; and transmitting a blocking signal from a previous sub-frame of the data sub-frame.
Abstract:
Disclosed herein are a method and an apparatus for a buffer status report in a mobile communication system. The method for a buffer status report includes setting a new QoS class identifier (QCI) value for supporting a radio bearer (RB) added for a low latency service; and allocating a logical channel of a RB for an existing service and a logical channel of a RB for the low latency service to logical channel groups (LCGs) in consideration of the newly set QCI value. Further the buffer status report for each logical channel performed in an LCG unit is received.
Abstract:
A terminal transmits and receives data by using legacy transport channels and legacy physical channels, which operate based on a first TTI, configures, when a service requiring an operation of a new second TTI is generated, new transport channels and new physical channels which operate based on the second TTI while configuring a new radio bearer, and thereafter, transmits and receives data of the service by using the new transport channels and the new physical channels.
Abstract:
A terminal of a communication system transmits a first signal through a physical uplink channel that is allocated within a first radio resource based on a first Transmission Time Interval (TTI) having a first time length at a first step for uplink access, performs the remaining steps for the uplink access using a second radio resource based on the second TTI from a base station, when the terminal may operate based on a second TTI having a second time length smaller than the first time length, and transmits uplink data.
Abstract:
A discovery method is provided by a device in a D2D direction communication. The device selects a discovery resource unit from among discovery resource units which are not being used after listening during one or more discovery resource periods. The device transmits a first discovery signal through the selected discovery resource unit in a broadcasting manner at a first discovery resource period, and transmits a second discovery signal through the selected discovery resource unit in a query-based manner at a second discovery resource period.
Abstract:
A D2D direct communication method is provided. The device sets at least one frame among a plurality of frames included in a superframe to a frame type 0 which is sectionized into a synchronization region for performing a synchronization procedure, a discovery region for discovering devices, a peering region for a connection, and a data region for scheduling of resources and data transmission. The device sets remaining frames among the plurality of frames to a frame type 1 which is sectionized into the synchronization region and the data region.
Abstract:
A synchronization method by a device is provided in a device-to-device direct communication. The device receives synchronization signals from a plurality of other devices at a current frame, and estimates a synchronization time at a next frame based on the synchronization signals received from the other devices.
Abstract:
A device transmits a discovery signal including identification information of the device in an empty discovery slot among a plurality of discovery slots of a discovery interval. The discovery signal includes two orthogonal frequency division multiplexing (OFDM) symbols. One of the two orthogonal frequency division multiplexing (OFDM) symbols includes at least one tone. The identification information of the device is displayed by a position of a subcarrier corresponding to the at least one tone.