Abstract:
Disclosed are a method and apparatus for transmitting information in a low latency mobile communication system. Delay time requests are obtained from terminals, and time intervals for transmitting control information for the respective terminals are determined on the basis of the delay time requests. Control information is transmitted to the respective terminals according to the determined time intervals.
Abstract:
A discovery signal that a first device joining in direct communication broadcasts through a radio channel is provided. The discovery signal includes a first field representing whether the discovery signal is a signal for discovering a device or a signal for discovering a service, and a second field including one of device identifier information of the first device and service information of a service that the first device provides according to a value of the first field.
Abstract:
A terminal executes a random access procedure with a target base station depending on a pre-random access channel (pre-RACH) command in a handover preparation step executed between a source base station currently accessed by the terminal and the target base station when the terminal receives the pre-RACH command from the source base station through layer2 (L2) signaling in the handover preparation step.
Abstract:
Provided are a method and an apparatus for performing a synchronous hybrid automatic repeat reQuest (HARQ). When a variable transmission time allocation is allocated per HARQ process, resource allocation information including a duration field corresponding to a length of a transmission time interval (TTI) allocated to each of the HARQ processes is transmitted. After the resource allocation information is transmitted, it is determined whether an HARQ error occurs at a predetermined timing and if it is determined whether the HARQ error occurs, the HARQ error is handled.
Abstract:
Disclosed is a method and apparatus for random access in a wireless communication system. In a communication environment in which a first terminal and a second terminal coexist, a base station receives a random access identification signal from one among a first terminal and a second terminal. The base station transmits a busy signal in response to the random access identification signal. After that, the base station receives data from the terminal having transmitted the random access identification signal.
Abstract:
Disclosed herein is a base station of a mobile communication system configuring at least one low latency transmission time interval (TTI) within a length of at least one transmission symbol in a subframe including a plurality of transmission symbols and transmitting LL (low latency) TTI related information using a physical control format indicator channel (PCFICH) transmitted at a pre-defined transmission symbol position within the subframe.
Abstract:
Disclosed is a base station that grants the same shared resource to a plurality of terminals, identifies a terminal transmitting uplink data in the same transmission time interval (TTI), when each of the plurality of terminals starts an initial transmission of the uplink data using the shared resource by distributed scheduling, allows each of the plurality of terminals to recognize not-acknowledgement (NACK) as a response signal to the uplink data if the number of terminals transmitting the uplink data is equal to or more than 1; and grants a contention-free resource as a retransmission resource to each of at least some terminals among the first number of terminals transmitting data that fail to receive among the identified terminals.
Abstract:
Disclosed herein are a method of transmitting a frame for supporting a legacy system, and a method and an apparatus of searching a cell using the same. A frame including a first frequency band for supporting a mobile communication system and a second frequency band for supporting a legacy system and having a total frequency band larger than the second frequency band is generated. Primary broadcasting information related to a frequency bandwidth is transmitted through a broadcasting physical channel of the second frequency band.
Abstract:
A synchronization signal transmitting apparatus generates a plurality of different primary synchronization signals that are transmitted in an ultra frame unit within one super ultra frame and generates one secondary synchronization signal that is transmitted in a frame unit within one super ultra frame.
Abstract:
A cooperation MIMO transmitting or receiving method is disclosed. A master terminal calculates a first signal to interference plus noise ratio (SINR), which is SINR between the mater terminal and a base station or between the master terminal and another cluster, and the master terminal calculates a second SINR, which is SINR between a slave terminal and the master terminal. Here, the master terminal forms a cluster with the slave terminal when the second SINR is higher than the first SINR.