Abstract:
A method and apparatus for a streaming service to provide scalability and view information are provided. When a scalable video or multi-view video is transmitted using a Moving Picture Experts Group-2 (MPEG-2) system, scalability information or view information regarding the scalable video or multi-view video in a payload may be used. Using the scalability information or view information, a packetized scalable video or multi-view video may be efficiently adapted to various terminal performances, various network characteristics, a specific user preference, and the like.
Abstract:
Provided are an apparatus for addition data transmission includes: an IF broadcasting signal generating unit receiving the broadcast data, and FEC and modulation of the received broadcast data to generate a broadcasting signal in an intermediate frequency (IF) band; an IF addition signal generating unit receiving the addition data to generate an addition signal in the IF band by using direct sequence spread spectrum (DSSS); an average power controlling unit controlling average power of the addition signal in the IF band; a signal combining unit combining the broadcasting signal in the IF band and the addition signal in the IF band to generate a combination signal; an RF upward converting unit upwardly converting the combination signal in a signal in a radio frequency (RF) band to a combination signal in the RF band; and a transmitting unit transmitting the combination signal in the RF band.
Abstract:
An operation method of a terminal in a communication system may comprise: performing a monitoring operation to receive BWP configuration information for common downlink communication; in response to receiving the BWP configuration information from the base station, configuring a common frequency region for the common downlink communication based on the BWP configuration information; receiving DCI including scheduling information of the common downlink communication from the base station; and performing the common downlink communication with the base station in the common frequency region by using a frequency resource indicated by the scheduling information, wherein the common downlink communication is communication between the base station and a plurality of terminals including the terminal.
Abstract:
Disclosed are an image encoding method using a skip mode and a device using the method. The image encoding method may comprise the steps of: judging whether there is residual block data of a prediction target block on the basis of predetermined data indicating whether residual block data has been encoded; and, if there is residual block data, restoring the prediction target block on the basis of the residual block data and an intra-screen predictive value of the prediction target block. Consequently, encoding and decoding efficiency can be increased by carrying out the encoding and decoding of screen residual data only for prediction target blocks where there is a need for a residual data block in accordance with screen similarity.
Abstract:
A method for transmitting and receiving scheduling information in a communication system is disclosed. A method for operating a UE comprises the steps of: receiving, from a base station, a control channel including scheduling information of first data in slot #n; receiving, from the base station, a data channel including the first data and second data in the slot #n; receiving, from the base station, a control channel in slot #n+k, the control channel including PI indicating a transmission position of the second data in the slot #n; and demodulating the data channel on the basis of the scheduling information and the PI. Therefore, the performance of a communication system can be improved.
Abstract:
The present invention relates to a video encoding/decoding method and apparatus, and more particularly, to a method and apparatus for generating a reference image for a multiview video. The video encoding method includes, in the presence of a second image having a different view from a first image having a first view, transforming the second image to have the first view, generating a reference image by adding the second image to a side of the first image, and storing the reference image in a reference picture list.
Abstract:
Disclosed is a method and apparatus for decoding video data. The method for decoding video data includes receiving coded video data including multi-view video data and depth data corresponding to the video data, acquiring motion data for inter-view prediction of a coding unit of the coded video data from the depth data, and performing inter-view prediction based on the motion data, and restoring video data according to the multi-view video data including the coding unit and the depth data based on the motion prediction.
Abstract:
Disclosed is a method and apparatus for decoding video data. The method for decoding video data includes receiving coded video data including multi-view video data and depth data corresponding to the video data, acquiring motion data for inter-view prediction of a coding unit of the coded video data from the depth data, and performing inter-view prediction based on the motion data, and restoring video data according to the multi-view video data including the coding unit and the depth data based on the motion prediction.
Abstract:
Disclosed is a method of encoding three-dimensional (3D) content. The method of encoding 3D content according to an embodiment may include setting a dependency between texture information and depth information of the 3D content, and generating a bitstream comprising the dependency.
Abstract:
Provided is a method of processing MPEG data, the method including: obtaining at least one access unit including media data coded through processing including an encapsulation and a packetization; generating at least one media processing unit (MPU) by grouping at least one access unit; determining a duration flag indicating whether duration information of the at least one access unit is valid, in a corresponding MPU; and inserting the duration flag into a header of the corresponding MPU.