Abstract:
Provided is an organic light emitting device. The organic light emitting device comprising a first light emitting part on a substrate, emitting a first light of a first wavelength, wherein the first light emitting part includes a transparent first electrode, a first organic light emitting layer, and a transparent second electrode sequentially stacked on the substrate, a second light emitting part on the first light emitting part, emitting a second light of a second wavelength, wherein the second light emitting part includes a transparent third electrode, a second organic light emitting layer, and a reflective fourth electrode sequentially stacked on the first light emitting part, and a fluorescent material disposed at least one between the substrate and the first light emitting part, and between the first light emitting part and second light emitting part.
Abstract:
A method of manufacturing an organic-light-emitting-diode (OLED) flat-panel light-source apparatus. The method includes depositing a metal layer on a substrate and patterning the metal layer to form a plurality of subsidiary electrodes, forming an insulating layer on the substrate including the plurality of subsidiary electrodes and forming a first subsidiary electrode layer by etching the insulating layer until some of the plurality of subsidiary electrodes are exposed, and sequentially forming an anode, an organic emission layer (EML), and a cathode on the substrate on which the first subsidiary electrode layer is formed.
Abstract:
Provided are an organic light emitting diode and a method of fabricating the same. The organic light emitting diode may include a light-scattering layer, a first electrode, an organic light-emitting layer, and a second electrode, which are sequentially stacked on a substrate, wherein the light-scattering layer may include uneven shaped nanostructures having irregular width and spacing. The method of fabricating the organic light emitting diode may include sequentially stacking a light-scattering medium layer and a metal alloy layer on a substrate, heat treating the metal alloy layer to form etching mask patterns, etching the light-scattering medium layer by using the etching mask patterns to form a light-scattering layer, removing the etching mask patterns, and forming a planarizing layer on the light-scattering layer.
Abstract:
Provided is a method of fabricating an organic light emitting device that may form a light scattering layer having an irregular random structure at a low temperature. The method includes providing a substrate coated with a precursor layer; sequentially forming a metal layer and an organic layer on the precursor layer; performing a heat treatment of the organic layer to form an organic mask from the organic layer; patterning the metal layer by using the organic mask to form a metal mask; patterning the precursor layer by using the metal mask to form a light scattering layer having an irregular random structure; removing the metal mask and the organic mask; and sequentially stacking a planarization layer, a first electrode, an organic light emitting layer, a second electrode, and a passivation layer on the light scattering layer.
Abstract:
Provided is a light emitting device including a lower electrode, an upper electrode disposed to face the lower electrode, a quantum dot light emitting layer between the lower electrode and the upper electrode, an electron transport layer between the lower electrode and the quantum dot light emitting layer, and a hole transport layer between the upper electrode and the quantum dot light emitting layer, wherein the quantum dot light emitting layer includes a quantum dot, and a first ligand on a surface of the quantum dot, and a second ligand on the surface of the quantum dot.
Abstract:
Provided is a method for manufacturing an electronic device including a transparent conductive structure, the method including preparing a transparent electrode in which, among a first region and a second region, the first region is selectively surface-modified, preparing a mixed composition including a first composition and a second composition having a different polarity from the first composition, and applying the mixed composition onto the transparent electrode, wherein the applied mixed composition is disposed in the surface modified first region, and the mixed composition disposed in the first region is phase-separated into a first composition layer and a second composition layer disposed on the first composition layer.
Abstract:
The inventive concept provides light emitting devices and methods of manufacturing a light emitting device. The light emitting device may include a transparent substrate including a first region and a second region, a first transparent electrode disposed on a first surface of the transparent substrate, a second transparent electrode facing and spaced apart from the first transparent electrode, an organic light emitting layer disposed between the first and second transparent electrodes, an assistant electrode disposed between the first and second transparent electrodes and selectively masking the second region, and a light path changing structure disposed on a second surface of the transparent substrate and selectively masking the second region.
Abstract:
Provided is a method of fabricating an organic scattering layer. The method may include providing a deposition apparatus with a reaction chamber and a source chamber, loading a substrate in the reaction chamber, supplying carrier gas into the source chamber that may be configured to supply an evaporated organic source material into the reaction chamber, a temperature of the carrier gas ranging from 25° C. to 50° C., and spraying the carrier gas and the evaporated organic source material into the reaction chamber through a showerhead to deposit an organic scattering layer on the substrate, the organic scattering layer including organic particles, which may be provided in a molecularized form of the evaporated organic source material, and thereby having an uneven surface.
Abstract:
Provided is a dual-mode display including a substrate, and a plurality of sub pixels on the substrate. Each of the sub pixels may include an emissive device, a reflective optical filter provided on a surface of the emissive device, and an optical shutter provided on other surface of the emissive device.
Abstract:
Provided is a light source apparatus which include a light emitting unit including a light emitting area of unit of surface, an antenna disposed along the outer periphery so as not to encroach on a light emitting area and a driving unit, and a driving unit processing wireless power received from the antenna and supplying the processed wireless power to the light emitting unit. According to the light source apparatus, miniaturization may be accomplished and a shielding phenomenon of an antenna reception signal caused by the light emitting area may be suppressed.