Abstract:
An embodiment of the inventive concept provides a method of manufacturing a polymer film, the method including: preparing a first copolymer containing a first functional group; preparing a second copolymer containing a second functional group; preparing a first compound containing a third functional group; and performing a cross-linking reaction by mixing the first copolymer, the second copolymer, and the first compound, wherein the cross-linking reaction includes a reaction of the first functional group and the second functional group and a reaction of the second functional group and the third functional group, the first compound includes a polar group and any one group selected from among a vinyl group, an aryl group, and an acrylate group, and the third functional group has reactivity with respect to the second functional group, but does not have reactivity with respect to the first functional group.
Abstract:
Provided is focal variable device system including a focus variable element including an absorbing layer, and an adjustable light source configured to cause an adjustable light to enter the focus variable element. The absorbing layer includes a thermal expansion material that absorbs the adjustable light and thermally expands.
Abstract:
Provided herein is an endoscope comprising an end portion configured to take an image; a controller configured to control the end portion and process the image input by the end portion; and a connector configured to connect the end portion and the controller, wherein the end portion is provided with at least one lens apparatus surrounding an exterior surface of the end portion, the lens apparatus being adapted to be brought to various focuses, thereby providing an effect of obtaining images from various viewpoints at a short period of time, and when used as an endoscope, obviating the need to move the multi-view and multi-focused variable lens at the end portion, making it possible to reduce the thickness of the connector that connects the end portion of the endoscope with the controller.
Abstract:
An auto focusing lens includes an active lens including a lens body including electroactive polymer and a transparent electrode at least partially coated on a surface of the lens body, and a controller controlling the focus of the active lens by applying a voltage to the transparent electrode.
Abstract:
A touch panel according to an embodiment of the present invention includes: a pressure detection unit including a light-source unit configured to generate an optical signal, an optical waveguide configured to transfer the optical signal, a sensing unit contacting with the optical waveguide to receive the optical signal according to an intensity of pressure applied externally, and a light-receiving unit configured to receive the optical signal transferred through the optical waveguide from the sensing unit; and an actuator contacting with the pressure detection unit to cause a deformation of a material according to the pressure intensity, wherein the actuator provides a tactile feedback through a vibration according to the pressure intensity.
Abstract:
Provided are a composition for a light transmittance control film, and a light transmittance control film. According to the inventive concept, the light transmittance control film includes a matrix part including a copolymer and a polymer chain which is grafted to the copolymer, and a dispersed part including a polymer derived from a first monomer, and are provided in the matrix part, wherein the polymer chain is derived from the first monomer, first light transmittance is shown while external force is applied, and second light transmittance which is greater than the first light transmittance may be shown after the external force is removed.
Abstract:
The present invention relates to a shape-variable electronic device and an operation method of the same and, more specifically, the shape-variable electronic device includes: a substrate having a cell region; a light source unit on the cell region; and a flexible layer vertically spaced apart from the light source unit. The flexible layer includes an actuator part that changes a shape of the flexible layer, and the actuator part includes: a photo-thermal response part that receives light emitted from the light source unit and generates thermal energy; a deformation part which receives the thermal energy from the photo-thermal response part and of which mechanical stiffness is reduced; and a top electrode and a bottom electrode on both surfaces of the deformation part, respectively.
Abstract:
Provided are a composition for a light transmittance control film, and a light transmittance control film. According to the inventive concept, the light transmittance control film includes a matrix part including a copolymer and a polymer chain which is grafted to the copolymer; and a dispersed part including a polymer derived from a first monomer, and are provided in the matrix part, wherein the polymer chain is derived from the first monomer, first light transmittance is shown while external force is applied, and second light transmittance which is greater than the first light transmittance may be shown after the external force is removed.
Abstract:
Disclosed is a varifocal lens module. A varifocal lens module according to an embodiment includes a lens formed of a flexible and transparent material and having a focal length varying according to a variable shape thereof; at least one driving part expanded or contracted in response to an electric signal; and at least one structural body configured to physically or chemically connect the lens and each driving part.
Abstract:
There are provided an image processing apparatus and a control method thereof. An image processing apparatus includes an image sensor for acquiring a target image, an image processing module for performing focusing on a specific area of the acquired target image and determining a focal surface of the target image on the basis of the performed focusing, and a drive control module for controlling the curvature of the image sensor, based on the determined focal surface.