Abstract:
Provided is a method of fabricating an organic light emitting device that may form a light scattering layer having an irregular random structure at a low temperature. The method includes providing a substrate coated with a precursor layer; sequentially forming a metal layer and an organic layer on the precursor layer; performing a heat treatment of the organic layer to form an organic mask from the organic layer; patterning the metal layer by using the organic mask to form a metal mask; patterning the precursor layer by using the metal mask to form a light scattering layer having an irregular random structure; removing the metal mask and the organic mask; and sequentially stacking a planarization layer, a first electrode, an organic light emitting layer, a second electrode, and a passivation layer on the light scattering layer.
Abstract:
Provided is an optical self-heterodyne detection system. The system includes a light source configured to generate light, a photodetector configured to detect the light, a programmable filter provided between the photodetector and the light source, and an electrical spectrum analyzer connected to the photodetector and configured to analyze a frequency and wavelength of the light using a detection signal of the photodetector. The light source may include a frequency comb light source.
Abstract:
A dual-mode display including a substrate and a multiple sub-pixels on the substrate, in which each sub-pixel includes, a color selection reflector, and an optical shutter disposed on the color selection reflector, and an emissive devised disposed on the shutter, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
Provided is a hybrid light emitting device. The hybrid light emitting device may include the first light emitting part on the substrate, the capping layer, and the second light emitting part. The first light emitting part may emit light having a first wavelength, and the first light emitting part may include a first electrode, an organic emitting layer, and a second electrode sequentially disposed. A second light emitting part may generate light having a second wavelength. A capping layer may be disposed between the organic emitting layer and the second light emitting part. The capping layer may reflect light having the first wavelength and transmit light having the second wavelength.
Abstract:
Disclosed are organic light emitting devices and methods of fabricating the same. The organic light emitting device may include light scattering parts having irregular island-shapes irregularly arranged. The organic light emitting device may further include a planarization layer, a first electrode, an organic light emitting layer, a second electrode, and an encapsulation layer. The light scattering parts may be formed using an organic solution having a low refractive index to improve light extraction efficiency of the organic light emitting device. Additionally, the light scattering parts of the irregular island-shapes may improve the light extraction efficiency of lights of all wavelengths, so as to be applied to an organic white light emitting device. The light scattering parts of the irregular island-shapes may be formed using the organic solution by a dewetting phenomenon. The light scattering parts may be formed at a temperature of about 250 degrees Celsius or less.