Abstract:
A terminal status monitoring apparatus connected to a terminal at an optical subscriber side in an optical network is provided. A signal transferring unit transfers a downlink optical signal to the terminal and receives, as a reflected optical signal, the downlink optical signal which is reflected at the terminal. A signal receiving unit measures an intensity of the reflected optical signal. A signal processing unit determines a connection status of a terminal device at the terminal by comparing an intensity of the downlink optical signal with the intensity of the reflected optical signal. A signal output unit outputs the connection status.
Abstract:
A method and an apparatus for setting a quiet window in a passive optical network system are provided. A first response time from a time after an optical line terminal (OLT) transmits a serial number request up to a time in which the OLT receives a first response signal to the serial number request is measured, and a second response time up to a time in which the OLT receives a final response signal to the serial number request is measured. In addition, distance information of an optical network unit (ONU) including the first response time and the second response time is acquired.
Abstract:
Disclosed are a method and system for determining and controlling power of an optical transmitter of an optical network unit (ONU) for a time and wavelength division multiplexing passive optical network (TWDM-PON). The system includes an RSSI collector configured to collect received signal strength indication (RSSI) information from upstream optical signals received from the ONUs connected to optical line terminal (OLT) ports, an ONU power level determiner configured to gather the pieces of RSSI information about the ONUs from the RSSI collector, and to determine power of optical transmitters of the ONUs based on the gathered information, and a power mode controller configured to receive power mode setting information of the optical transmitters of the ONUs from the ONU power level determiner, and to generate a physical layer operation and maintenance (PLOAM) message to control power modes of the ONUs based on the received power mode setting information.
Abstract:
Disclosed herein is an Intrusion Detection System (IDS) false positive detection apparatus and method. An IDS false positive detection apparatus includes a payload extraction unit for extracting payloads by dividing each packet corresponding to an IDS detection rule into a header and a payload. A false positive payload information generation unit generates false positive payload information required to identify a false positive payload by extracting a payload of a false positive packet based on results of packet analysis received from a manager. A false positive payload determination unit transmits results of a determination of whether each payload extracted by the payload extraction unit corresponds to a false positive payload, based on the false positive payload information, to the manager.
Abstract:
Disclosed are an apparatus and a method capable of adjusting an upstream band for a corresponding ONU by detecting a quantity of bands occupied by a packet, not an effective user packet, among upstream transmission bands for each target object of allocation of each band in the OLT to examine whether a queue report is normal, and detecting an ONU, which transmits an abnormal queue report, according to the examination. An OLT of a PON according to an exemplary embodiment of the present disclosure includes: a frame monitoring unit configured to monitor upstream frame data received for each T-CONT; an error detection unit configured to determine whether a queue report error is generated for each T-CONT according to a result of the monitoring; and a band allocation controller configured to allocate an upstream band for an ONU, in which the queue report error is generated, separately from a normal ONU.
Abstract:
Disclosed is an adaptive deep learning inference system that adapts to changing network latency and executes deep learning model inference to ensure end-to-end data processing service latency when providing a deep learning inference service in a mobile edge computing (MEC) environment. An apparatus and method for providing a deep learning inference service performed in an MEC environment including a terminal device, a wireless access network, and an edge computing server are provided. The apparatus and method provide deep learning inference data having deterministic latency, which is fixed service latency, by adjusting service latency required to provide a deep learning inference result according to a change in latency of the wireless access network when at least one terminal device senses data and requests a deep learning inference service.
Abstract:
Disclosed is a method and an apparatus for selecting a wavelength in a hybrid Passive Optical Network (PON) system. The method of selecting a wavelength by a wavelength selecting apparatus in a hybrid passive optical network system includes: performing synchronization with any one of a plurality of downstream wavelengths; when the synchronization is succeeded, determining whether to select the synchronized downstream wavelength for a registration to an optical line terminal; and when it is determined to select the synchronized downstream wavelength, performing the registration to the optical line terminal through the synchronized downstream wavelength.
Abstract:
A fast protection switching method for a Passive Optical Network (PON). When performing protection switching from an operation link (an operation network) to a protection link (a protection network) in a PON, the fast protection switching method enables rapidly updating Equalization Delay (EqD) values, even if the EqD values are different for Optical Network Terminals (ONTs) of varying distances.
Abstract:
Disclosed are a method and system for determining and controlling power of an optical transmitter of an optical network unit (ONU) for a time and wavelength division multiplexing passive optical network (TWDM-PON). The system includes an RSSI collector configured to collect received signal strength indication (RSSI) information from upstream optical signals received from the ONUs connected to optical line terminal (OLT) ports, an ONU power level determiner configured to gather the pieces of RSSI information about the ONUs from the RSSI collector, and to determine power of optical transmitters of the ONUs based on the gathered information, and a power mode controller configured to receive power mode setting information of the optical transmitters of the ONUs from the ONU power level determiner, and to generate a physical layer operation and maintenance (PLOAM) message to control power modes of the ONUs based on the received power mode setting information.
Abstract:
An apparatus and method for detecting forgery/falsification of a homepage. The apparatus includes a homepage image shot generation module for generating homepage image shots of an entire screen of an accessed homepage. A character string extraction module extracts character strings from each homepage image shot using an OCR technique. A character string comparison module compares each of the extracted character strings with character strings required for determination of homepage forgery/falsification, thus determining whether the extracted character string is a normal character string or a falsified character string. A homepage falsification determination module determines whether the corresponding homepage has been forged/falsified, based on results of the comparison. A character string learning module learns the character string extracted from the homepage image shot, based on results of the determination, and classifies the character string as the normal character string or the falsified character string.