Abstract:
An improved radiation therapy planning procedure is suggested. The procedure comprises the steps of specifying and determining the absolute grade of cell degeneracy by in-vitro tests, whereby marker(s) indicative for specific cell degeneracy are detected and quantified, establishing a biology-based segmentation of areas with similar grade of relative cell degeneracy and applying the absolute grade of cell degeneracy to the biology-based segmentation data, thereby establishing an improved radiation therapy planning procedure. Moreover, the present invention suggests a system for an improved radiation therapy planning procedure and its use in procedures of diagnosis and/or therapy management of cancer
Abstract:
The present invention provides a system, apparatus, and method that are based on a priori knowledge of the shape of the input function for defining an input region-if-interest (ROI) in pharmacokinetic modeling. Kinetic parameter estimation requires knowledge of tracer input activity and the present invention provides an automatic way to define an ROI for estimation of an input function that takes into account a priori knowledge of the shape of the input function based on an administered dose. As a result of the application of the present invention to existing imaging analysis systems, there is a reduction in the amount of manual interaction needed and operator dependence is thereby reduced in the evaluation of dynamic procedures.
Abstract:
A method within dynamic molecular imaging comprising dynamically estimating a first parameter (β(x)) and a second parameter (k(x)) of an activity function describing the bio distribution of an administered tracer, is disclosed. More specifically, the method comprises specifying a first target variance (σβ,T(x)) and a second target variance (σβ,T(x)) of the first parameter (β(x)) and the second parameter (k(x)) of the activity function, respectively; initiating an image acquisition; reconstructing the first parameter (β(x)) and the second parameter (k(x)); reconstructing a first associated variance (σβ(x)) and a second associated variance (σk(x)) of the first parameter (β(x)) and the second parameter (k(x)), respectively; and repeating the image acquisition and the reconstructing until the first associated variance (σβ(x)) and the second associated variance (σk(x)) are equal to or less than the first target variance (σβ,T(x)) and the second target variance (σβ,T(x)), respectively, σβ(x)≦σβ,T(x) and σk(x)≦σβ,T(x). The method enables patient-specific adaptive protocols within molecular imaging.
Abstract:
A method for use in functional medical imaging includes adaptively partitioning functional imaging data as a function of a spatially varying error model. The functional image data is partitioned according to an optimization strategy. The data may be visualized or used to plan a course of treatment. In one implementation, the image data is partitioned so as to vary its spatial resolution. In another, the number of clusters is varied based on the error model.
Abstract:
In a radiation therapy method, one or more planning images are acquired (102) of a subject. Features of at least malignant tissue are contoured in the one or more planning images to produce one or more initial feature contours. One or more treatment images of the subject are acquired (114). The one or more initial feature contours are updated (122) based on the one or more treatment images. Radiation treatment parameters are optimized (126) based upon the updated one or more feature contours. Radiation treatment of the subject is performed (130) using the optimized parameters.
Abstract:
A method within dynamic molecular imaging comprising dynamically estimating a first parameter (β(x)) and a second parameter (k(x)) of an activity function describing the bio distribution of an administered tracer, is disclosed. More specifically, the method comprises specifying a first target variance (σβ,T(x)) and a second target variance (σβ,T(x)) of the first parameter (β(x)) and the second parameter (k(x)) of the activity function, respectively; initiating an image acquisition; reconstructing the first parameter (β(x)) and the second parameter (k(x)); reconstructing a first associated variance (σβ(x)) and a second associated variance (σk(x)) of the first parameter (β(x)) and the second parameter (k(x)), respectively; and repeating the image acquisition and the reconstructing until the first associated variance (σβ(x)) and the second associated variance (σk(x)) are equal to or less than the first target variance (σβ,T(x)) and the second target variance (σβ,T(x)), respectively, σβ(x)≦σβ,T(x) and σk(x)≦σβ,T(x). The method enables patient-specific adaptive protocols within molecular imaging.
Abstract:
The invention relates to an imaging system for imaging an object (4), said imaging system comprising a detection unit (3) for consecutively acquiring projection data sets (Pi) of the object (4), said detection unit (3) having a temporal response function that is characterized by at least a time constant (τ), a rotation unit that, while the projection data sets (Pi) are being acquired, moves the detection unit (3) around the object (4) with an essentially constant angular velocity (ω), a reconstruction unit (9) for computing an image data set (13) of the object (4) from the projection data sets (Pi), and a filter unit (10) that, in an active state, applies a filter (f) on the image data set (13) to compute a correction, which filter acts as a derivative on the perturbed image, essentially in a direction corresponding to the direction of the angular velocity, is essentially proportional to the time constant (τ) and is essentially proportional to the angular velocity (ω), said filter unit (10) being arranged to subtract the correction from the image data set (13).
Abstract:
A therapy system (100) includes an imager (102), a therapy planner (104), and a therapy device (106). The therapy planner (104) includes a therapy prescription apparatus (118) which calculates a desired therapy (D) to be applied to a human patient or other subject. The therapy prescription system (118) uses a pathology model (122) and a patient-specific biological parameter history (124) to optimize the applied therapy.
Abstract:
The invention relates to an imaging system for imaging an object (4), said imaging system comprising a detection unit (3) for consecutively acquiring projection data sets (Pi) of the object (4), said detection unit (3) having a temporal response function that is characterized by at least a time constant (τ), a rotation unit that, while the projection data sets (Pi) are being acquired, moves the detection unit (3) around the object (4) with an essentially constant angular velocity (ω), a reconstruction unit (9) for computing an image data set (13) of the object (4) from the projection data sets (Pi), and a filter unit (10) that, in an active state, applies a filter (f) on the image data set (13) to compute a correction, which filter acts as a derivative on the perturbed image, essentially in a direction corresponding to the direction of the angular velocity, is essentially proportional to the time constant (τ) and is essentially proportional to the angular velocity (ω), said filter unit (10) being arranged to subtract the correction from the image data set (13).
Abstract:
In a radiation therapy method, one or more planning images are acquired (102) of a subject. Features of at least malignant tissue are contoured in the one or more planning images to produce one or more initial feature contours. One or more treatment images of the subject are acquired (114). The one or more initial feature contours are updated (122) based on the one or more treatment images. Radiation treatment parameters are optimized (126) based upon the updated one or more feature contours. Radiation treatment of the subject is performed (130) using the optimized parameters.