摘要:
Embodiments of the invention include an apparatus for overpackaging and routing of optical fiber power splitting devices, such as planar lightwave circuit (PLC) devices. The apparatus includes an axial overpackage housing with a first end configured as an optical fiber for coupling to the input port of a planar waveguide element positioned within the overpackage housing, and a second end configured for coupling to a plurality of output ports of the planar lightwave element. The apparatus includes one or more transition blocks coupled to the second end of the overpackage housing. The transition block can be integral with or coupled to the second end of the overpackage housing directly, or via one or more fibers or multi-fiber groups. The transition block transitions the second end of the overpackage housing to individual fibers. The transition block also can pre-arrange the fibers to bend or route within a fiber management system.
摘要:
Embodiments of the invention include an optical power splitting module apparatus. The module apparatus includes at least one input port, one or more multi-fiber output ports, and an optical fiber-splitter device coupled therebetween. The optical splitter device has a first end configured as at least one single optical fiber, and a second end configured as one or more multi-fiber groups. The first end of the splitter device is coupled to the input port and the second end of the splitter device is coupled to the output ports. The first end of the splitter device is, e.g., an LC connector. The second end of the splitter device is, e.g., one or more Multi-fiber Push On (MPO) connectors. The optical splitter device is, e.g., a 1×N planar lightwave circuit (PLC) splitter, such as a 1×32 PLC splitter with an LC input connector and four 8-fiber MPO output connectors.
摘要:
A fiber optic cable distribution box has an interface compartment for interfacing a first set of fibers when routed inside the compartment, with a second set of fibers associated with a fiber optic cable that is routed to the box. A drum region is disposed beneath the interface compartment. The drum region includes a cylindrical wall for supporting a fiber optic cable wound about the wall. The drum region is formed so that the box can turn about the axis of the cylindrical wall when a cable is paid out from the drum region. The interface compartment and the drum region are constructed so that the first set of fibers inside the interface compartment, originate from an inside end portion of the cable wound on the drum region.
摘要:
A network provider cable is routed to a splitter box in a multi-dwelling unit or commercial building where the cable fibers are terminated. One or more riser cables, each terminated at one end at the splitter box, are routed through a building shaft. Each riser cable contains fibers associated with units located on a certain set of one or more floors of the building. The other end of each riser cable is terminated at an aggregation box associated with the floors of the set. A feeder cable is routed between the aggregation box and each floor of the set, or a corresponding floor area of one floor. A drop box is provided for each floor or floor area for terminating the corresponding feeder cable. Drop cables are routed between the drop box and units on the floor or in the floor area to be served.
摘要:
A fiber optic cable distribution box has an interface compartment for interfacing a first set of fibers when routed inside the compartment, with a second set of fibers associated with a fiber optic cable that is routed to the box. A drum region is disposed beneath the interface compartment. The drum region includes a cylindrical wall for supporting a fiber optic cable wound about the wall. The drum region is formed so that the box can turn about the axis of the cylindrical wall when a cable is paid out from the drum region. The interface compartment and the drum region are constructed so that the first set of fibers inside the interface compartment, originate from an inside end portion of the cable wound on the drum region.
摘要:
A fiber optic cable distribution box has an interface compartment for interfacing a first set of fibers when routed inside the compartment, with a second set of fibers associated with a fiber optic cable that is routed to the box. A drum region is disposed beneath the interface compartment. The drum region includes a cylindrical wall for supporting a fiber optic cable wound about the wall. The drum region is formed so that the box can turn about the axis of the cylindrical wall when a cable is paid out from the drum region. The interface compartment and the drum region are constructed so that the first set of fibers inside the interface compartment, originate from an inside end portion of the cable wound on the drum region.
摘要:
Optical fiber and cable management apparatus includes a base for mounting on a wall or other surface at a subscriber premises, and a drum region extending axially upward from the base. The drum region includes an outer cylindrical wall for supporting a length of a first fiber optic cable wound about the outer wall, an inner cylindrical wall disposed radially inward of the outer wall to define an annular fiber routing region between the two walls, and a cable entry port in the outer wall for receiving an end portion of the first fiber optic cable so that fibers of the cable may be routed through the fiber routing region. An interface compartment disposed atop the drum is constructed to interface a first set of fibers routed within the compartment, with a second set of fibers associated with a second fiber optic cable that is routed to the apparatus.
摘要:
A manufacturing process converts a standard flat belt conveyor belt into a new, positively driven, pitch differential belt. A strip of thermoplastic material having a physical characteristic, such as melting temperature, that differs from the physical characteristic of the thermoplastic material comprising the conveyor belt, is applied to the drive side of a commercially available conveyor belt and machined to create a plurality of teeth, or drive bars, of any desired geometry that is configured to engage with the with sprockets or drums of the drive mechanism on the conveyor. The strip and/or drive bars can also be made by additive manufacturing, such as by 3D printing. Two ends of the resulting belt segment are cut to length and spliced, preferably with finger joints, to make a continuous loop using an industry standard hot-plate vulcanizer with a custom fitting called an alignment mold. The melting temperature of the belt and the strip/teeth are chosen to be far enough apart so that the belt may be spliced without melting the teeth. The alignment mold is a silicon pad that has recesses shaped to conform to the geometry/pitch of teeth so that the teeth retain their integrity and shape during the splicing process.
摘要:
An optical fiber is permanently routed easily, quickly, and unobtrusively at a customer premises using an inventive hand tool, without staples or other fasteners. The fiber has an adhesive outer coating that is activated as the fiber is applied by the tool on an exposed surface such as a wall, ceiling, molding, groove, or corner at the premises. When the activated coating hardens, the fiber is bonded to the surface on which it was applied, and the hardened coating also provides physical protection for the fiber. In the disclosed embodiment, the coated fiber is supplied on a spool that mounts on the tool, and the coating is activated by guiding the fiber as it unwinds from the spool through a chamber containing an activating substance. The fiber with the activated coating is then guided to an applicator wheel on the tool which applies the fiber to the surface.
摘要:
A communication line such as an optical fiber or cable is attached along a wall, ceiling, trim piece, or other target surface inside of a building by laying out the line from an applicator tool. An outer surface of the line is placed in a temporarily tacky condition as the line is laid out from the tool along the target surface. The temporarily tacky condition of the line is due at least in part to an adhesive component that is pre-applied to the outer surface of the line. The adhesive component is activated by an agent or medium that is associated with the applicator tool. The line becomes non-tacky after it is attached to the target surface.