Abstract:
There is disclosed a device including: an electron beam generation device 10 which accelerates a pulse electron beam 1 to transmit the beam through a predetermined rectilinear orbit 2; a laser generation device 20 which generates a pulse laser light 3; a laser light introduction device 30 which introduces the pulse laser light 3 onto the rectilinear orbit 2 so as to collide with the pulse electron beam 1; a metal target 42 which generates a particular X-ray 5 by collision with the pulse electron beam 1: and a target moving device 40 capable of moving the metal target between a collision position 2a on the rectilinear orbit and a retreat position out of the orbit. A collision surface of the metal target 42 is positioned spatially at the same position as that of the collision point 2a. At the retreat position of the metal target, the pulse electron beam 1 collides with the pulse laser light 3 to generate a monochromatic hard X-ray 4. At the collision position of the metal target 42, the pulse electron beam 1 collides with the metal target 42 to generate the particular X-ray 5 from the same light source position 2a.
Abstract:
A device for measuring profiles of an electron beam and a laser beam is provided with a profile measuring device 30 for measuring cross-section profiles of the beams in the vicinity of a collision position where an electron beam 1 and a laser beam 3 are brought into frontal collision, and a moving device 40 for continuously moving the profile measuring device in a predetermined direction which substantially coincides with the axial directions of the beams. Furthermore, based on the cross-section profiles measured by the profile measuring device, the position of the profile measuring device in the predetermined direction, and the oscillation timings of the beams, temporal changes in three-dimensional profiles of the electron beam and the laser beam are created by a profile creating device 50.
Abstract:
An optical scanning apparatus that scans a light beam from a light source includes: a movable portion and a fixed portion. The movable portion includes: a rotating member, which is capable of rotating about a rotation axis being parallel with an optical axis of the light beam, has an open hole through which the light beam passes, and is provided with a first coil; and a mirror that is provided to the rotating member, electrically connected with the first coil, and reflects the light beam that passes through the open hole of the rotating member in a variable angle with respect to the optical axis of the light beam. The fixed portion includes: a magnetic member; and a second coil capable of supplying an electromagnetic field to the first coil. One of a part and a whole of the magnetic member is made of a magnetic material and the magnetic member serves as a magnetic core of the second coil.
Abstract:
An X-ray waveform is generated by validating detection data corresponding to when an X-ray (4) is generated at a collision point (9) among X-ray detection data and invalidating other data. For example, when laser light (3) is pulse laser light and an electron beam (1) is a continuous electron beam or a pulse-like electron beam having a pulse width equal to or greater than that of the pulse laser light, the X-ray waveform is generated by detecting the laser light (3) and multiplying the X-ray detection data by laser light detection data after making time axes coincident with respect to the collision point (9).
Abstract:
A charged particle beam decelerating device includes a high-frequency cavity 34 provided on an orbit of a charged particle beam 1, and a phase synchronizing device 40 for synchronizing the charged particle beam 1 in the high-frequency cavity with a phase of a high-frequency electric field 4. By moving the high-frequency cavity 34 or changing an orbit length of the charged particle beam 1, the charged particle beam in the high-frequency cavity is synchronized with a phase of the high-frequency electric field 4.
Abstract:
A multi-color X-ray generator includes an electron beam generator 10 which accelerates an electron beam to generate a pulse electron beam 1 and which transmits the beam along a predetermined rectilinear orbit 2, a composite laser generator 20 which successively generates a plurality of pulse laser lights 3a, 3b having different wavelengths, and a laser light introduction device 30 which introduces the pulse laser lights along the rectilinear orbit 2 to be opposed to the pulse electron beam 1, so that the plurality of pulse laser lights 3a, 3b successively head-on collide with the pulse electron beam 1 along the rectilinear orbit 2 so as to generate two or more types of monochromatic hard X-rays 4 (4a, 4b).
Abstract:
There is disclosed a device including: an electron beam generation device 10 which accelerates a pulse electron beam 1 to transmit the beam through a predetermined rectilinear orbit 2; a laser generation device 20 which generates a pulse laser light 3; a laser light introduction device 30 which introduces the pulse laser light 3 onto the rectilinear orbit 2 so as to collide with the pulse electron beam 1; a metal target 42 which generates a particular X-ray 5 by collision with the pulse electron beam 1: and a target moving device 40 capable of moving the metal target between a collision position 2a on the rectilinear orbit and a retreat position out of the orbit.
Abstract:
A robot control system according to an aspect of an embodiment includes a plurality of robots, at least one external axis, and converters. The robots perform axis behaviors. The external axes are a movable axis shared by the robots and are mutually connected to the robots. Each of the converters assumes a virtual robot formed by connecting all the external axes to the one robot and converts acquisition values on positions of the robot and the external axes acquired for the virtual robot into conversion values indicating absolute positions in a predetermined normal coordinate system.
Abstract:
An image forming apparatus includes a light output unit that outputs light and a light scanning unit that includes at least one light reflection part reflecting the light output from the light output unit, and scans a display surface in a first direction at a first speed and scans the surface in a second direction orthogonal to the first direction at a second speed lower than the first speed with the light reflected by the light reflection part, wherein a drawable region in which an image can be formed on the display surface by scanning with the light has at least two parts of a part in which a length of the drawable region in the first direction increases, a part in which the length decreases, and a part in which the length is maintained constant from a first side toward a second side in the second direction.
Abstract:
An X-ray waveform is generated by validating detection data corresponding to when an X-ray (4) is generated at a collision point (9) among X-ray detection data and invalidating other data. For example, when laser light (3) is pulse laser light and an electron beam (1) is a continuous electron beam or a pulse-like electron beam having a pulse width equal to or greater than that of the pulse laser light, the X-ray waveform is generated by detecting the laser light (3) and multiplying the X-ray detection data by laser light detection data after making time axes coincident with respect to the collision point (9).