Abstract:
A multi core optical fiber that includes a plurality of cores disposed in a cladding. The plurality of cores include a first core and a second core. The first core has a first propagation constant β1, the second core has a second propagation constant β2, the cladding has a cladding propagation constant β0, and (I).
Abstract:
An apparatus for light diffraction and an organic light emitting diode (OLED) incorporating the light diffraction apparatus is disclosed. An apparatus for light diffraction may comprise an optional planarization layer, a transparent substrate, a waveguide layer. The planarization layer may have a refractive index of ns. The transparent substrate may have a refractive index of ng. The waveguide layer may have a refractive index nw distributed over of the transparent substrate. The waveguide layer may comprise a binding matrix, at least one nanoparticle. The waveguide layer may be interposed between the transparent substrate and the optional planarization layer.
Abstract:
A multicore optical fiber that includes seventeen cores arranged in a hexagonally close-packed configuration, each core having a core center and comprising silica and an up-dopant; and a cladding region surrounding the seventeen cores, the cladding region having a cladding edge, an outer diameter, and a cladding composition comprising silica. The outer diameter of the cladding region is between about 100 microns and 150 microns. Further, the hexagonally close-packed configuration has bi-lateral symmetry to accommodate bi-directional data flow within the fiber.
Abstract:
An organic light emitting diode (OLED) device having enhanced light extraction is disclosed. The OLED device includes an upper waveguide structure having an organic layer and supports first guided modes, and a lower waveguide structure with a light-extraction waveguide that supports second guided modes substantially matched to the first guided modes. The lower waveguide structure includes a light-extraction waveguide interfaced with a light-extraction matrix. The light-extraction waveguide includes one or more light-redirecting features. The upper and lower waveguide structures are configured to facilitate mode coupling from the first guided modes to the second guide modes while substantially avoiding coupling the first guided modes to surface plasmon polaritons. The light traveling in the second guided modes is redirected to exit the OLED device by light-redirecting features of the light-extraction waveguide.
Abstract:
An apparatus for light diffraction and an organic light emitting diode (OLED) incorporating the light diffraction apparatus is disclosed. An apparatus for light diffraction may comprise an optional planarization layer, a transparent substrate, a waveguide layer. The planarization layer may have a refractive index of ns. The transparent substrate may have a refractive index of ng. The waveguide layer may have a refractive index nw distributed over of the transparent substrate. The waveguide layer may comprise a binding matrix, at least one nanoparticle. The waveguide layer may be interposed between the transparent substrate and the optional planarization layer.
Abstract:
An optical coupling device includes a multi-core fiber alignment station, a single-mode fiber alignment station, and a furcation lens assembly. The multi-core fiber alignment station and single-mode fiber alignment station include alignment hardware configured to position optical fibers at fixed positions relative to an optical axis of the furcation lens assembly. The furcation lens assembly includes a furcating and projecting axicon surfaces that are rotationally invariant and are configured such that optical modes of an optical fiber aligned in one of the fiber alignment stations are spatially separated and substantially telecentrically mapped to corresponding optical modes of optical fibers aligned in the other fiber alignment station.