Abstract:
This invention describes an ion mobility spectrometer system for chemical detection in the field. The system allows: a high throughput operation, an interface to new ionization methods, and an interface to a mass spectrometer.
Abstract:
Various embodiments of a multi-dimensional ion mobility analyzer are disclosed that have more than one drift chamber and can acquire multi-dimensional ion mobility profiles of substances. The drift chambers of this device can, for example, be operated under independent operational conditions to separate charged particles based on their distinguishable chemical/physical properties. The first dimension drift chamber of this device can be used either as a storage device, a reaction chamber, and/or a drift chamber according to the operational mode of the analyzer. Also presented are various methods of operating an ion mobility spectrometer including, but not limited to, a continuous first dimension ionization methods that can enable ionization of all chemical components in the sample regardless their charge affinity.
Abstract:
This invention describes an ion mobility spectrometer system for chemical detection in the field. The system allows: a high throughput operation, an interface to new ionization methods, and an interface to a mass spectrometer.
Abstract:
The present invention relates to a preconcentrator for vapors and particles collected from air. The vapor preconcentrator is made from plural layer of coils. The coil is made of resistance alloy. The pitch size of the coil is made to precisely trap/filter out certain size of the particles during preconcentration. Multiple coils could be made with different pitch sizes to achieve multiple step filtrations. When the sample flow enters the preconcentrator chamber, it passes through the coils. The particles of different sizes are trapped on different layer of coils. The vapor sample can be trapped on any coils when interacted with the coil surface. They could be trapped without any affinitive coating as the preconcentrator is at relatively low temperature. Different coils or different sections of the coil can be coated with different material to trap chemicals of different classes. During the desorption process, the coils are flash heated with controlled temperature ramping speed to evaporate the trapped chemicals. Various configurations, constructions, and methods of operation are presented.
Abstract:
The present invention relates to drift tubes for ion mobility spectrometers. In one embodiment, the drift tube of the present invention uses a simplified design having helical resistive material to form substantially constant electric fields that guide ion movements. The drift tube for ion mobility spectrometers described herein is constructed with a non-conductive structure. This configuration provides a robust ion mobility spectrometer that is simple to build. One feature of the present invention is that the drift tube design described herein enables the ion mobility spectrometer to be built with a lower weight, lower power consumption, lower manufacturing cost, and free of sealants.
Abstract:
The present invention relates to ion mobility spectrometers. In one embodiment, the ion mobility spectrometer of the present invention uses a simplified ion mobility spectrometer design having helical resistive material to form substantially constant electric fields that guide ion movements. The drift tube for ion mobility spectrometers described herein is constructed with a non-conductive structure. This configuration provides a robust ion mobility spectrometer that is simple to build. One feature of the present invention is that the drift tube design described herein enables the ion mobility spectrometer to be built with a lower weight, lower power consumption, lower manufacturing cost, and free of sealants.
Abstract:
This invention describes a sample collection and desorption device and method that collects residues of explosives and other chemicals from a surface and then introduces them into a detector. The desorption method and device include introducing additional chemicals while heating up the sample collector, thus, the collected sample may be converted via a chemical reaction or a catalytic process. The detector can be an ion mobility spectrometer or mass spectrometer.
Abstract:
The present invention uses an AC voltage instead of DC voltage on an ion gate to filter/selectively pass ions. The ions that pass through the AC ion gate can be further separated in a spectrometric instrument. An ion mobility spectrometer using the AC ion gate can achieve better gating performance. For a time of flight ion mobility spectrometer with an AC ion gate, a narrow pulse of selected ions can be passed into a drift tube where they are separated based on their low field ion mobility. Moreover, when the AC voltage at the AC ion gate has a waveform as used for differential ion mobility spectrometry, the time of flight ion mobility spectrometer is converted into a two dimensional separation spectrometer, where ions are first separated based on their high field ion mobility and then further separated based on their low field ion mobility.
Abstract:
An ion mobility spectrometer wherein ions are separated along a drift axis while providing a drift gas flow in a direction that is substantially neither in the direction of the drift axis nor opposite to the drift axis. An ion mobility spectrometer and operation methods use a cross-directional gas flow in a drift tube and/or a segmented drift tube for pre-separation.
Abstract:
The present invention describes separating components in a sample in an ion mobility based spectrometer using at least one matching property of the components other than the molecular properties in conventional ion mobility measurements in noble drift gases to enhance separation and resolution of the sample. Separation based on the matching property is realized by altering the drift media of the IMS. Besides altering drift media, energy level of ions and/or drift media are also controlled during the separation process. This invention describes an ion mobility apparatus wherein an energy source is added to the IMS that provides additional energy to the ions and/or drift media and tuning methods that involve selecting drift media and optimizing the energy level in order to achieve optimal performance.