Abstract:
An wavefront sensor uses a calibration wave generator to calculate correction factors to be applied to ratiometric combinations of position sensor output signals to determine real centroid deflection values.
Abstract:
A wavefront sensor includes a light source configured to illuminate a subject eye, a detector, a first beam deflecting element configured to intercept a wavefront beam returned from a subject eye when the subject eye is illuminated by the light source and configured to direct a portion of the wavefront from the subject eye through an aperture toward the detector and a controller, coupled to the light source and the beam deflecting element, configured to control the beam deflecting element to deflect and project different portions of an annular ring portion of the wavefront from the subject eye through the aperture and further configured to pulse the light source at a firing rate to sample selected portions of the annular ring at the detector.
Abstract:
An wavefront sensor uses a calibration wave generator to calculate correction factors to be applied to ratiometric combinations of position sensor output signals to determine real centroid deflection values.
Abstract:
A sequential wavefront sensor includes a light source, a beam deflecting element, a position sensing detector configured to output a plurality of output signals and a plurality of composite transimpedance amplifiers each coupled to receive an output signal. The output of each composite transimpedance amplifier is phase-locked to a light source drive signal and a beam deflecting element drive signal.
Abstract:
Example embodiments of a large dynamic range sequential wavefront sensor for vision correction or assessment procedures are disclosed. An example embodiment optically relays a wavefront from an eye pupil or corneal plane to a wavefront sampling plane in such a manner that somewhere in the relaying process, the wavefront beam from the eye within a large eye diopter range is made to reside within a desired physical dimension over a certain axial distance range in a wavefront image space and/or a Fourier transform space. As a result, a wavefront beam shifting device can be disposed there to fully intercept and hence shift the whole beam to transversely shift the relayed wavefront.
Abstract:
In order to take advantage of the real time nature of intra-operative refraction or wavefront aberrometry, and visually make the history of the measurements apparent to a surgeon, a histogram of frequency vs IOL results calculated from an IOL formula is computed and IOL suggestions being accumulated are displayed in a histogram. One embodiment is a means to present to a surgeon a histogram of intra-operative refractions. Another embodiment is to automatically and intra-operatively detect the aphakic phase of a cataract surgery to display a histogram of a recommended IOL power.
Abstract:
Example embodiments of a large dynamic range sequential wavefront sensor for vision correction or assessment procedures are disclosed. An example embodiment includes first and second optically coupled 4F relays and a variable focus lens disposed substantially at the image plane of the first 4F relay and the object plane of the second 4F relay.
Abstract:
In one embodiment, a wavefront sensor is combined with a slit lamp eye examination device so that real time aberration values of an eye being examined can be viewed during a slit lamp eye examination session.
Abstract:
An wavefront including a light source for providing a light beam to illuminate a subject eye and a beam deflecting to deflect the light beam to compensate transverse movement of the subject eye. A second beam deflecting element scans the beam around a small portion of the retina to dissipate energy.
Abstract:
In one embodiment, a wavefront sensor is combined with a slit lamp eye examination device so that real time aberration values of an eye being examined can be viewed during a slit lamp eye examination session.