Abstract:
A method for quantifying caries, executed at least in part on data processing hardware, the method comprising generating a digital image of a tooth, the image comprising intensity values for a region of pixels corresponding to the tooth, gum, and background; extracting a lesion area from sound tooth regions by identifying tooth regions, extracting suspicious lesion areas, and removing false positives; identifying an adjacent sound region that is adjacent to the extracted lesion area; reconstructing intensity values for tooth tissue within the lesion area according to values in the adjacent sound region; and quantifying the condition of the caries using the reconstructed intensity values and intensity values from the lesion area.
Abstract:
Method and apparatus embodiments can generate a volume fluorescence image of a tooth. Method and apparatus embodiments can project structured light patterns onto a tooth and generate a contour (volume) image of the tooth surface from acquired corresponding structured light projection images; then acquire one or more fluorescence images of the tooth generated under blue-UV illumination. A composite image that shows fluorescence image content mapped to the generated contour image can be transmitted, stored, modified and/or displayed.
Abstract:
Method and/or apparatus embodiments for automatically identifying caries, executed at least in part on data processing hardware, can acquire, multiple reflectance images of a tooth, wherein each reflectance image includes at least red, green, and blue intensity values for a region of pixels corresponding to the tooth. Each reflectance image in the plurality of reflectance images is processed by (i) defining a tooth region within the reflectance image; and (ii) identifying caries within the defined tooth region for each reflectance image. The reflectance images are registered and the registered processed images are combined to form a result image that shows the identified caries. In one embodiment, multiple reflectance images of a tooth are taken from substantially the same camera position.
Abstract:
A method and system for intra-oral imaging using High Dynamic Range (HDR) and highlight removal is presented. The method comprising generating a first High HDR irradiation map of teeth with multiple images captured with different exposures for same intra-oral scene; and removing highlight caused by a specular reflection in a detail-reserved way from the first HDR irradiation map so as to obtain a second HDR irradiation map in which the specular reflection is at least partly suppressed.
Abstract:
A system and method for imaging a tooth. The method illuminates the tooth and acquires reflectance image data and illuminates the tooth and acquires fluorescence image data from the tooth. The acquired reflectance and fluorescence image data for the tooth are aligned to form aligned reflectance and fluorescence image data. For one or more pixels of the aligned reflectance and fluorescence image data, at least one feature vector is generated, having data derived from one or both of the aligned reflectance and fluorescence image data. The aligned reflectance and fluorescence image data and the at least one feature vector are processed using one or more trained classifiers obtained from a memory that is in signal communication with the computer. Processing results indicative of tooth condition are displayed.
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image from the tooth and a second spectral range for exciting a fluorescence image from the tooth. A polarizing beamsplitter in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor, wherein the second polarization state is orthogonal to the first polarization state. A first lens in the return path directs image-bearing light from the tooth toward the sensor, and obtains image data from the portion of the light having the second polarization state. A long-pass filter in the return path attenuates light in the second spectral range.
Abstract:
In an exemplary method for obtaining a contour image of a tooth, which can be executed at least in part by a computer, movement of an intra-oral camera can be detected by acquiring a first video image frame that includes the tooth and processing the first video image frame to detect one or more edges of the tooth in the first video image frame and acquiring a second video image frame that includes the tooth and processing the second video image frame to detect the one or more edges of the tooth in the second video image frame. The method can compare corresponding edge locations between the first and second processed video image frames and projects a fringe pattern illumination onto the tooth from the camera, capturing and storing one or more still images of the fringe pattern according to the detected camera movement.
Abstract:
A method and apparatus for generating a color mapping for a dental object. The method includes generating a transformation matrix according to a set of spectral reflectance data for a statistically valid sampling of teeth. Illumination is directed toward the dental object over at least a first, a second, and a third wavelength band, one wavelength band at a time. For each of a plurality of pixels in an imaging array, an image data value is obtained, corresponding to each of the at least first, second, and third wavelength bands. The transformation matrix is applied to form the color mapping by generating a set of visual color values for each of the plurality of pixels according to the obtained image data values and according to image data values obtained from a reference object at the at least first, second, and third wavelength bands. The color mapping can be stored in an electronic memory.
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image from the tooth and a second spectral range for exciting a fluorescence image from the tooth. A polarizing beamsplitter in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor, wherein the second polarization state is orthogonal to the first polarization state. A first lens in the return path directs image-bearing light from the tooth toward the sensor, and obtains image data from the portion of the light having the second polarization state. A long-pass filter in the return path attenuates light in the second spectral range.
Abstract:
A method for color texture imaging of teeth with a monochrome sensor array obtains a 3-D mesh representing a surface contour image according to image data from views of the teeth. For each view, recording image data generates sets of at least three monochromatic shading images. Each set of the monochromatic shading images is combined to generate 2-D color shading images, corresponding to one of the views. Each polygonal surface in the mesh is assigned to one of a subset of the views. Polygonal surfaces assigned to the same view are grouped into a texture fragment. Image coordinates for the 3-D mesh surfaces in each texture fragment are determined from projection of vertices onto the view associated with the texture fragment. The 3-D mesh is rendered with texture values in the 2-D color shading images corresponding to each texture fragment to generate a color texture surface contour image.