Abstract:
The invention provides a vacuum evaporation device, belongs to the field of vacuum evaporation and can solve the problem of non-uniform thickness of a coating film formed by an existing vacuum evaporation device. The vacuum evaporation device provided by the present invention comprises an evaporation chamber, at least one evaporation source device disposed in the evaporation chamber, and a baffle assembly disposed between the evaporation source device and a substrate to be evaporated. The evaporation source device is disposed within the center region of a base plate of the evaporation chamber. The baffle assembly is provided with a baffle assembly opening used for allowing evaporation substances to pass therethrough and corresponding to the position of the evaporation source device. As the evaporation source device is disposed within the center region of the evaporation chamber, the thickness of a coating film formed on the surface of the substrate is more uniform.
Abstract:
The present invention provides a printing head comprising a plurality of sub-heads each comprising a base and a plurality of diversion trenches provided in the base, and one end of each of the diversion trenches is connected to one of nozzles of the sub-head. Projections of all the diversion trenches on a first plane in a first projection direction are arranged at an equal interval, the first plane is a plane defined by an arrangement direction and a length direction of the diversion trenches in the sub-head, and the first projection direction is a moving direction of the printing head with respect to a printing surface during printing. The spacing of the diversion trenches in each of the sub-heads is greater than that of the projections of all the diversion trenches in the first plane on the first projection direction.
Abstract:
The present disclosure provides a thin film transistor (TFT), its manufacturing method, an array substrate and a display device. The method for manufacturing the TFT includes steps of forming patterns of a gate electrode, a source electrode and a drain electrode on a base substrate; and forming a pattern of an active layer and a pattern of a passivation layer covering the active layer by a single patterning process. The passivation layer is made of a negative or positive photoresist, and the active layer is insulated from the gate electrode and electrically connected to the source electrode and the drain electrode.
Abstract:
An organic light-emitting diode (OLED) substrate, which includes a plurality of light-emitting sub-pixels and a pixel partition wall, wherein at least one layer among hole injection layers (HIL), hole transport layers (HTL) and organic light-emitting layers of at least two light-emitting sub-pixels has a different thickness; and upper surfaces of the HIL, the HTL and the organic light-emitting layer of any light-emitting sub-pixel are each parallel and level to an upper surface of one respective lyophilic film layer of the pixel partition wall. The OLED substrate can be used for improving the surface smoothness of each organic layer of the light-emitting sub-pixel. The embodiment of the present invention further provides a display device.
Abstract:
An organic thin film transistor and a method of manufacturing the same, an array substrate and a display device are disclosed. The thin film transistor including: a source electrode (4), a drain electrode (5), an organic semiconductor layer (6) disposed on the source electrode (4) and drain electrode (5), and a modified layer (7); the modified layer (7) is disposed at a position below an organic semiconductor layer (6) and corresponding to the source electrode (4) and the drain electrode (5), covers the source electrode (4) and the drain electrode (5), and is configured to change a contact angle on both the source electrode (4) and the drain electrode (5). The thin film transistor avoids the problems of poor formation effects and easy disconnection of the organic semiconductor layer (6) because of the large contact angle on electrode layers, and therefore reduces production costs.
Abstract:
An organic thin film transistor and a preparation method thereof, an array substrate and a preparation method thereof, and a display device; and the preparation method of the organic thin film transistor comprises: forming a source-drain metal layer including a source electrode (12a) and a drain electrode (12b), and forming an organic semiconductor active layer (13) in contact with the source electrode (12a) and the drain electrode (12b); and forming an organic insulating thin film (140) on a substrate (10) where the source-drain metal layer and the organic semiconductor active layer (13) have been formed, thinning the organic insulating thin film (140) and curing the thinned organic insulating thin film (140), or curing the organic insulating thin film (140) and thinning the cured organic insulating thin film (140), to form an organic insulating layer (14). The method can be used to form a thin and uniform organic insulating layer, so a technical difficulty in forming a via hole is reduced.
Abstract:
Embodiments of the present invention provide a display panel with a pixel defining layer and a manufacturing method of the pixel defining layer, and the display panel with the pixel defining layer comprises: a substrate; a plurality of pixel regions, arranged on the substrate in a matrix form; the pixel defining layer, disposed on the substrate and comprising: a plurality of openings; a pixel divider, surrounding each of the plurality of openings and defining the plurality of pixel regions, wherein a sidewall of the pixel divider for defining each of the pixel regions is formed so that a slope angle of an upper portion is larger than that of a lower portion thereof.
Abstract:
A pixel circuit, driving method thereof, organic light-emitting display panel and display apparatus, comprise driving transistor, first storage capacitor, collecting unit, writing unit and light-emitting unit; the collecting unit is used for collecting the threshold voltage of the driving transistor and storing the threshold voltage into the first storage capacitor, under the control of the first scan signal; the writing unit is used for storing the data voltage inputted from the input terminal for the data voltage under the control of the second scan signal; and the light-emitting unit is used for emitting lights, driven by the data voltage and a voltage inputted from the input terminal for the controllable low voltage, under the control of the light-emitting control signal. Thus, the organic light-emitting device is not affected by the threshold voltage shift of the driving transistor, which may enhance the image uniformity of the organic light-emitting display panel effectively.
Abstract:
The present disclosure relates to a method of manufacturing an Organic Light-Emitting Diode (OLED) display substrate and the manufactured OLED display substrate. The method comprises: forming an auxiliary electrode and an insulating layer sequentially on a base substrate; forming at least one via in the insulating layer, the via exposing at least a portion of the auxiliary electrode; forming an organic light-emitting layer on the insulating layer; injecting a conductive liquid into the via; curing the conductive liquid and electrically connecting the cured conductive liquid to the auxiliary electrode; and forming a first electrode layer on the organic light-emitting layer, and electrically connecting the first electrode layer to the auxiliary electrode through the cured conductive liquid in the via.
Abstract:
The present disclosure relates to an organic light emitting panel, including: an organic layer, a first electrode disposed on one side of the organic layer, and a second electrode disposed on the other side of the organic layer. The second electrode includes a buffer electrode layer and a conductive electrode layer sequentially stacked on the organic layer.