Abstract:
The present application discloses an array substrate having a subpixel region and an inter-subpixel region. The array substrate includes a base substrate; a thin film transistor on the base substrate and including a drain electrode; a passivation layer on a side of the thin film transistor distal to the base substrate; a pixel electrode layer on a side of the passivation layer distal to the base substrate; a pixel definition layer in the inter-subpixel region; and an organic light emitting layer in the subpixel region on a side of the pixel electrode layer distal to the passivation layer. The array substrate includes a via extending through the passivation layer. The pixel electrode layer is electrically connected to the drain electrode of the thin film transistor through the via. The via is in the subpixel region.
Abstract:
A hybrid light emitting device, a display panel, and a display device are disclosed. The hybrid light emitting device comprises a first electrode, a light emitting material composite layer, a hybrid connecting composite layer, a first light emitting layer, and a second electrode which are stacked in this order. The first electrode and second electrode are configured to provide a first carrier and a second carrier during operation, respectively. The hybrid connecting composite layer comprises at least two hybrid connecting layers. In a direction from the first electrode to the second electrode, the at least two hybrid connecting layers increase in term of the first carrier mobility and decrease in term of the second carrier mobility.
Abstract:
Provided are a display substrate and a manufacturing method therefor, and a display device. The display substrate includes: a base substrate, a pixel defining layer (40, 40′) formed on the base substrate, and a light emitting layer located in a sub-pixel region (P) defined by the pixel defining layer (40, 40′), wherein, the pixel defining layer (40, 40′) includes: a reflecting layer (41, 41′), configured such that light emitted from the light emitting layer to the reflective layer (41, 41′) is reflected to a light outgoing side of the display substrate. The display device adopting the display substrate not only can effectively solve the problems of light leakage and light color interference, but also can effectively improve light out-coupling efficiency and color purity.
Abstract:
A display substrate has a display area and a non-display area. The non-display area includes a dummy pixel area located in a periphery of the display area. The display substrate includes a substrate; a first pixel defining layer disposed on the substrate and located in the display area, the first pixel defining layer having a plurality of first openings; and a second pixel defining layer disposed on the substrate and located in the dummy pixel area, the second pixel defining layer having a plurality of second openings. A capacity of a second opening is greater than a capacity of a first opening, and an open area of a second opening is less than or equal to an open area of a first opening.
Abstract:
A flattening device, a display substrate and a method for manufacturing the display substrate are provided. The method includes providing a base substrate, forming a pixel definition layer on the base substrate and forming an uncured sub-pixel material in a plurality of sub-pixel regions defined by the pixel definition layer, and flattening the uncured sub-pixel material by a flattening device. The flattening device includes a main body and a plurality of protrusions on a surface of the main body. A size of a protrusion surface of each protrusion facing away from the main body is not greater than that of each sub-pixel region. The sub-pixels are flattened by using the flattening device, so a sub-pixel material layer with a flat surface may be obtained, which improves the structure of the sub-pixels and improves the display performance of the display substrate.
Abstract:
An inkjet printing method of an array substrate, an array substrate, and a display device are disclosed. The array substrate includes n kinds of sub-pixels; and the inkjet printing method includes: recording a solvent volume required for inkjet printing of an i-th kind of sub-pixel as Vi; calculating an Xi value for each kind of the n kinds of sub-pixels, in which Xi=Vi/V1, and V1 refers to a solvent volume required for inkjet printing of a first kind of sub-pixels; taking a greatest common divisor of the Xi values of the n kinds of sub-pixels, and recording the greatest common divisor as G; and dividing the i-th kind of sub-pixel into Xi/G subunits with equal areas, and performing inkjet printing on each of the subunits of the i-th kind of sub-pixel with a solvent volume of V1*G to form a film layer.
Abstract:
Disclosed is an array substrate and a method for manufacturing the same and a display device. The array substrate comprises: a substrate; a first electrode layer formed on the substrate; a pixel defining layer formed on the first electrode layer and having an opening for exposing the first electrode layer; and an organic material functional layer formed on a region of the first electrode layer corresponding to the opening. The first electrode layer comprises: a first region located at a central portion of the first electrode layer; a second region located between a periphery of the first region and an inner side of the pixel defining layer, the second region being formed as a first arc structure protruding toward the substrate; and a third region located outside the second region and covered by the pixel defining layer. The thicknesses, at positions of respective films of the organic material functional layer in the display device, are uniform. Non-uniform brightness of the display device is avoided, improving display quality of images of the display device.
Abstract:
A dry box and a control method therefor, and a preparation method for an organic electroluminescent device are provided. The dry box includes a cavity and a hot plate arranged in the cavity. The hot plate includes a plurality of heating spots, the plurality of heating spots being arranged towards the hot plate to support a surface of a device to be dried, and some of the temperature of the plurality of heating spots being different and the heating spots being insulated from each other.
Abstract:
This disclosure relates to a pixel defining structure, a display panel, a method of manufacturing the same, and a display device. The pixel defining structure includes: a first pixel defining layer with a first opening, located on a substrate, wherein the first pixel defining layer includes a first portion formed by a first hydrophilic-hydrophobic material and a second portion formed by a second hydrophilic-hydrophobic material, projections of the first portion and the second portion on a surface of the substrate are substantially not overlapped, a side surface of the first pixel defining layer facing the first opening includes a first side surface formed by the first hydrophilic-hydrophobic material and a second side surface formed by the second hydrophilic-hydrophobic material, and the first hydrophilic-hydrophobic material has a different hydrophilicity and hydrophobicity from that of the second hydrophilic-hydrophobic material.
Abstract:
The present disclosure provides various arrangements of a pixel defining layer. The pixel defining layer includes first and second sub-defining layers sequentially and laminatedly disposed on a base substrate. An orthographic projection of the second sub-defining layer less closer to the base substrate on the base substrate is located within an orthographic projection of the first sub-defining layer closer to the base substrate on the base substrate. A surface of each of the first and second sub-defining layers parallel to a surface of the base substrate is a lyophobic surface, a side surface of each of the first and second sub-defining layers is a lyophilic surface.