Abstract:
The embodiment of the present invention relates to an organic light-emitting diode (OLED) device, which comprises a pixel define layer (PDL) and a light-emitting structure. Metal nanoparticles are doped in the PDL. The OLED device improves the luminous efficiency. The embodiment of the present invention further provides a method for manufacturing the OLED device.
Abstract:
A display base plate includes sub-pixels, substrate, pixel defining layer disposed on side of substrate which includes first, second and third retaining wall; first and second retaining wall configured to form opening area of sub-pixel, first retaining wall is located between opening areas of adjacent sub-pixels having different colors, second retaining wall is located between opening areas of adjacent sub-pixels having same color; third retaining wall is disposed at side of first retaining wall facing away from substrate, and orthographic projection of third retaining wall on substrate is located within range of orthographic projection of first retaining wall on substrate; surface of side of first retaining wall away from substrate is higher than surface of side of second retaining wall away from substrate, and is lower than a surface of side third retaining wall away from substrate.
Abstract:
The present disclosure provides display base plate, preparation method thereof and display device. The display base plate includes plurality of sub-pixels, substrate, and pixel defining layer disposed on side of the substrate, the pixel defining layer is configured for forming opening area of the sub-pixel, and the opening area has long edge and short edge; the plurality of sub-pixels include first sub-pixel and second sub-pixel having the same color and adjacent to each other, the opening area of the first sub-pixel is first opening area having first long edge, the opening area of the second sub-pixel is second opening area having first short edge; the first long edge is at least partially adjacent to the first short edge, height of the pixel defining layer located between the first opening area and second opening area is at least less than that of at least portion of some other pixel defining layers.
Abstract:
The present disclosure provides a substrate comprising a printing area, wherein the printing area comprises a flat surface and a plurality of separation structures projecting from the flat surface, wherein the plurality of separation structures divide the printing area into a plurality of micro-areas, and in each of the micro-areas, a circular region containing no separation structure has a maximum diameter between 5 μm and 10 μm. The present disclosure further provides a light emitting device comprising the substrate and a method for manufacturing the substrate.
Abstract:
The present disclosure provides a display substrate, a display device and a method of fabricating the display substrate. The display substrate comprises: a base substrate; a light-emitting layer on the base substrate; and a light-adjusting layer between the light-emitting layer and the base substrate to adjust light emitted by the light-emitting layer.
Abstract:
A method for manufacturing a light-emitting layer, an electroluminescent device and a display device are provided, and the method includes: providing a base substrate formed with a pixel definition layer, so that a plurality of barrier wall structures of the pixel definition layer define a plurality of pixel regions that include pixel regions arranged along a first direction and pixel regions arranged along a second direction; forming a solution layer on the base substrate formed with the pixel definition layer, so that the solution layer includes a solution formed in the plurality of pixel regions and a solution formed on first barrier wall structures and the solution in the pixel regions does not blend with the solution on the first barrier wall structures; performing a drying process on the solution layer so that the solution in each pixel region forms a light-emitting structure to obtain a light-emitting layer.
Abstract:
Embodiments of the present disclosure provide an ink-jet printing method and a manufacturing method of an OLED display device. The ink-jet printing method includes printing a first ink within a groove defined by a pixel defining layer, such that the first ink forms a first thin film by a drying process, the first thin film covering an inner surface of a lyophilic portion of the pixel defining layer; removing a central portion of the first thin film, the central portion being located at the bottom of the groove; and printing a second ink into the groove covered with the first thin film, such that the second ink forms a second thin film by the drying process.
Abstract:
The present invention provides a printing head comprising a plurality of sub-heads each comprising a base and a plurality of diversion trenches provided in the base, and one end of each of the diversion trenches is connected to one of nozzles of the sub-head. Projections of all the diversion trenches on a first plane in a first projection direction are arranged at an equal interval, the first plane is a plane defined by an arrangement direction and a length direction of the diversion trenches in the sub-head, and the first projection direction is a moving direction of the printing head with respect to a printing surface during printing. The spacing of the diversion trenches in each of the sub-heads is greater than that of the projections of all the diversion trenches in the first plane on the first projection direction.
Abstract:
An organic light-emitting diode (OLED) substrate, which includes a plurality of light-emitting sub-pixels and a pixel partition wall, wherein at least one layer among hole injection layers (HIL), hole transport layers (HTL) and organic light-emitting layers of at least two light-emitting sub-pixels has a different thickness; and upper surfaces of the HIL, the HTL and the organic light-emitting layer of any light-emitting sub-pixel are each parallel and level to an upper surface of one respective lyophilic film layer of the pixel partition wall. The OLED substrate can be used for improving the surface smoothness of each organic layer of the light-emitting sub-pixel. The embodiment of the present invention further provides a display device.
Abstract:
The present disclosure is related to a method of manufacturing a display substrate. The method may include forming a pattern layer (100, 200) on a base substrate (300) and forming a first planarization layer (500). The pattern layer (100, 200) may include at least one recess (105). Forming the first planarization layer (500) may include forming a pre-polymerized solution (501) at least in the recess (105) and polymerizing the pre-polymerized solution (501) in the recess (105) to form the first planarization layer (500).