Abstract:
The present invention provides a method and an apparatus for forming an oriented nanowire material as well as a method for forming a conductive structure, which can be used to solve the problem of imperfect process for forming oriented nanowire material in prior art. The method for forming an oriented nanowire material of the present invention comprises: forming a liquid film in a closed frame by a dispersion containing nanowires; expanding the closed frame in a first direction so that the liquid film expands in the first direction along with the closed frame; contracting the closed frame in the first direction so that the liquid film contracts in the first direction along with the closed frame; transferring the contracted liquid film to a substrate; and curing the liquid film to form an oriented nanowire material on the substrate.
Abstract:
Disclosed are a near-eye display device and a near-eye display system. The excitation light source structure provides excitation light to the first waveguide structure, and the outgoing coupling grating structure corresponding to the first waveguide structure receiving the excitation light may be further irradiated by the excitation light, and be excited and output the light with a pixel color corresponding to the first waveguide structure. That is, the outgoing coupling grating structure corresponding to the first waveguide structure receiving the excitation light can derive the light with the corresponding pixel color emitted by the projection-based display, and be excited by the excitation light emitted by the excitation light source structure to output light with a pixel color corresponding to the first waveguide structure.
Abstract:
A light conversion structure applied to a display device, and a backlight module, a color filter substrate, and a display device including the light conversion structure are provided. The light conversion structure includes a light filter structure (100) including a first optical film layer (110) and a second optical film layer (120) which are alternately arranged and attached to each other in a total number of N, N is an even number, one of a surface (111) of the first optical film layer (110) far away from the second optical film layer (120) and a surface (121) of the second optical film layer (120) far away from the first optical film layer (110) is a light incident surface (1001) of the light filter structure (100), and the other one is a light-exiting surface (1003). A part of the incident light (101) of first color that is reflected by the light incident surface (1001) is a first reflected light (102), a part of the incident light (101) of first color that is reflected by an interface (1002) between the first optical film layer (110) and the second optical film layer (120) is a second reflected light (103), and an optical path difference between the first reflected light (102) and the second reflected light (103) is an integer multiple of a wavelength of the incident light (101) of first color. The light conversion structure can reflect a part of the incident light of first color to allow the incident light of first color to be reused, thereby improving a utilization of a light-emitting material in the display device.
Abstract:
A display panel and a driving method thereof, a drive device, and a drive system. The display panel includes a plurality of data lines, a plurality of gate lines, and a pixel array. The pixel array includes a communication pixel including a communication sub-pixel; the first communication gate line of the plurality of gate lines connected to the communication sub-pixel is configured to transmit a first scan signal which includes a display scan sub-signal and a first communication scan sub-signal, the first communication data line of the plurality of data lines connected to the communication sub-pixel is configured to transmit a first data signal which includes a first display data sub-signal and a first communication data sub-signal; and the communication sub-pixel is configured to display information corresponding to the first display data sub-signal and information corresponding to the first communication data sub-signal in a time-sharing manner.
Abstract:
The present disclosure provides an array substrate, a method for controlling the same, and a display device. The array substrate comprises: a base substrate; and an array of first thin film transistors, a signal line array, a photosensor array and a receiving line array, each provided on the base substrate. Each first thin film transistor in the array of first thin film transistors is connected to one signal line of the signal line array. Each photosensor in the photosensor array is connected to one signal line in the signal line array and one receiving line in the receiving line array.
Abstract:
A peep-proof device and a peep-proof display apparatus are provided. The peep-proof device includes: a guest-host liquid crystal cell; and a polarizer stacked on the guest-host liquid crystal cell, wherein the guest-host liquid crystal cell comprises a first alignment film, the first alignment film comprising first alignment film portions and second alignment film portions arranged alternately, and each of the first alignment film portions having an alignment direction perpendicular to an alignment direction of each of the second alignment film portions.
Abstract:
A protective device of mobile equipment is provided. The protective device of mobile equipment comprises: a bottom plate and a protective cover plate connected with and opposite to the bottom plate. The protective cover plate is provided with a light collecting layer and a photovoltaic layer. The light collecting layer is configured to refract the incident light and guide it into the photovoltaic layer. The photovoltaic layer is configured to convert energy of the incident light guided by the light collecting layer into electric energy. The light collecting layer is used to guide the incident light to the photovoltaic layer, so that the utilization rate of the incident light is improved, and the capability of the protective device of mobile equipment with solar charging function supplying power to the mobile equipment and continuously charging the mobile equipment is enhanced.
Abstract:
A display system and a display control method of the display system are provided. The display system includes a display device, at least two layers of liquid crystal cells on a light-emitting side of the display device, and a controller device. The display device is configured to display a display picture; the at least two lavers of liquid crystal cells are configured to control an exit angle of light of the display picture; the controller device is configured to control positions and/or widths of light-transmitting regions and light-shielding regions of each layer of the liquid crystal cells to control a display mode of the display picture. The display system can control the positions and widths of the light-transmitting regions and the light-shielding regions formed on each liquid crystal cell according to actual needs, thereby realizing switching among various display modes.
Abstract:
An adjustable reflective device includes a base substrate, a reflective film disposed above the base substrate, and an adjustment assembly configured to control reflectivities of different portions of the reflective film.
Abstract:
The present disclosure provides an array substrate, a method for controlling the same, and a display device. The array substrate comprises: a base substrate; and an array of first thin film transistors, a signal line array, a photosensor array and a receiving line array, each provided on the base substrate. Each first thin film transistor in the array of first thin film transistors is connected to one signal line of the signal line array. Each photosensor in the photosensor array is connected to one signal line in the signal line array and one receiving line in the receiving line array.