Abstract:
An image processing method and system, a storage medium and a moving system are provided, and the image processing method includes: obtaining a 2D depth array Dp having depth information of a target object; calculating to obtain a depth vector D=[d1, d2, d3, . . . , di, . . . , dn], in which an element di is an average value of elements of the ith row in the 2D depth array; calculating to obtain an edge determination vector ΔD=[Δd1, Δd2, Δd3, . . . , Δdi, . . . , Δdn−1], in which an element Δdi=|di−di+1|; calculating an average value d0=(|Δd2−Δd1|+|Δd3−Δd2|+ . . . +|Δdn−1−Δdn−2|)/(n−2); and comparing an absolute value |Δdi−Δdi+1| with d0 to identify an edge of the target object, in which in a situation where |Δdi−Δdi+1| is greater than d0, it is determined that the elements of the ith row in the 2D depth array Dp correspond to the edge of the target object.
Abstract:
There are disclosed a signal processing method, a signal reception processing apparatus and a TV system, wherein the signal processing method comprises: receiving a control signal and decoding said control signal; comparing a signal instruction obtained from the decoding with preset instructions and generating an execution instruction corresponding to the matched preset instruction, wherein said preset instructions include a channel storage instruction and a channel change instruction; and performing corresponding execution actions according to the execution instruction. In the signal reception processing apparatus and the TV system based on the above method, specific channels are stored by decoding the control signal, and thus by storing specific channels, the aged can perform operations only on these specific TV channels instead of all TV channels when watching TV programs, and therefore they can watch TV program conveniently.
Abstract:
An AC-DC converter, power supply board and display apparatus is disclosed. The AC-DC converter comprises: an AC-DC converting circuit; a transformer, whose primary coil has a first terminal coupled to a positive output terminal of the AC-DC converting circuit, and second terminal connected to a load; a voltage monitoring circuit, whose input terminal is coupled to the first terminal of the secondary coil, and second terminal of the secondary coil connected to a ground; and a control circuit, whose input terminal is coupled to an output terminal of the voltage monitoring circuit, and output terminal coupled to the AC-DC converting circuit; wherein the voltage monitoring circuit outputs a control voltage when a voltage outputted by the first terminal of the secondary coil of the transformer exceeds a first threshold; the control circuit controls the AC-DC converting circuit to stop providing power supply when the control voltage exceeds a second threshold.
Abstract:
There are disclosed a backlight source driving circuit and a display apparatus. The backlight source driving circuit comprises a switch field effect transistor (Q1), a freewheeling field effect transistor (Q2), a power supplying module, a control module, a LED group (Z) and a feedback module, the power supplying module is configured to supply power to the LED group (Z), the control module is configured to control turn-on timings of the switch field effect transistor (Q1) and the freewheeling field effect transistor (Q2) to be opposite, and the feedback module is configured to provide a feedback voltage to the control module. The backlight source driving circuit is disposed in the display apparatus. By utilizing the field effect transistor as the freewheeling device in the backlight source driving circuit, the power consumption of the driving circuit is decreased effectively and an efficiency of the driving circuit is enhanced.
Abstract:
An AC-DC converter, power supply board and display apparatus is disclosed. The AC-DC converter comprises: an AC-DC converting circuit; a transformer, whose primary coil has a first terminal coupled to a positive output terminal of the AC-DC converting circuit, and second terminal connected to a load; a voltage monitoring circuit, whose input terminal is coupled to the first terminal of the secondary coil, and second terminal of the secondary coil connected to a ground; and a control circuit, whose input terminal is coupled to an output terminal of the voltage monitoring circuit, and output terminal coupled to the AC-DC converting circuit; wherein the voltage monitoring circuit outputs a control voltage when a voltage outputted by the first terminal of the secondary coil of the transformer exceeds a first threshold; the control circuit controls the AC-DC converting circuit to stop providing power supply when the control voltage exceeds a second threshold.
Abstract:
A backlight module and a display device comprising the backlight module, the backlight module, including: a backlight source, including a plurality of backlight lamps (5); and a backlight source control device, including: a backlight source driving device, configured to provide a driving signal to the backlight source; a 2D/3D backlight switching unit; and a first switch, connected with the 2D/3D backlight switching unit, wherein the 2D/3D backlight switching unit (4) is configured to control switching-on and switching-off of the first switch while a displaying mode is switched between a 2D displaying mode and a 3D displaying mode, and the backlight source driving device is directly connected with a part of the plurality of backlight lamps of the backlight source, and the remaining backlight lamps in the backlight source are connected with the backlight source driving device via the first switch. By flexibly controlling over the backlight source, the brightness of the backlight source can be flexibly controlled while a display device is switched between the 2D displaying mode and the 3D displaying mode.
Abstract:
A display device, a display system and a display method are provided. The display device comprises a main display screen, and a ratio of a number of pixels in a transverse direction to a number of pixels in a longitudinal direction of the main display screen is a main display scale. The display device further comprises: a first sub display screen adjoined with the main display screen in the longitudinal direction, and the first sub display screen and the main display screen having the same number of pixels in the transverse direction; and/or, a second sub display screen adjoined with the main display screen in the transverse direction, and the second sub display screen and the main display screen having the same number of pixels in the longitudinal direction.
Abstract:
A light guide plate, a backlight module and a display device both comprising the light guide plate are disclosed. The light guide plate comprises a light emitting surface and multiple side surfaces perpendicular to and connected to the light emitting surface, the side surfaces including at least one first side surface and at least one second side surface. The light guide plate further comprises at least one set of folded surfaces perpendicular to and connected to the light emitting surface. Each set of folded surfaces is connected between a pair of first side surface and second side surface which are adjacent with each other. Each set of folded surfaces includes multiple light incident surfaces which are connected one by one. In the light incident surfaces in same set of folded surfaces, any two adjacent light incident surfaces form an acute angle opened toward inside of the light guide plate.